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Abstract: Adapting speech models to new languages requires an optimization of the trade-off between accuracy and 

computational cost. In this work, we investigate the optimization of Mozilla’s DeepSpeech model when adapted from English 

to German and Swiss German through selective freezing of layers. Employing a strategy of transfer learning, we analyze the 

performance impacts of freezing different numbers of network layers during fine-tuning. The experiment reveals that 

freezing the initial layers achieves significant performance improvements: training time decreases and accuracy increases. 

This layer-freezing technique hence offers an extensible way to improve automated speech recognition for under-resourced 

languages. 

 

Keywords: Automatic Speech Recognition (ASR); Deep Speech; German; Layer Freezing; Low-Resource Languages; Swiss 

German; Transfer Learning. 

 

How to Cite: Revanth Reddy Pasula; (2025). Optimizing Speech Models with Freezing. International Journal of Innovative Science  

and Research Technology, (RISEM–2025), 69-73. https://doi.org/10.38124/ijisrt/25jun167 

 

I. INTRODUCTION 

 

ASR systems have improved mostly for the language of 

English, leading to very well-optimized models for speech 

tasks (e.g., text-to-speech systems [15]). In contrast, 

languages with few data sources—like standard German and 

Swiss German—are under-resourced because they lack large 

training sets and domain-specific models. The contribution of 

the current work is to bridge this gap, and we adapt Mozilla's 

DeepSpeech implementation¹ of Baidu's DeepSpeech 

architecture [1] to both German and Swiss German. We use 
transfer learning with a proven pre-trained model in English, 

and we thoroughly investigate the impact of the freezing of 

various network layers during fine-tuning. 

 

Previous attempts at deploying DeepSpeech for 

German [2] and Swiss German [3] have delivered early 

evidence; nonetheless, differences in data composition and 

training methods call for further inquiries. In this research, 

emphasis is put into separating the effects of selective layer 

freezing and examining the contribution that it makes towards 

improving the performance of the recognizer while 
minimizing training time. The research is framed against the 

backdrop of modern developments in transfer learning 

methods and the growing interest in ensuring computationally 

efficient ASR model adaptation towards the use of limited 

resource environments. 

 

II. TRANSFER LEARNING AND LAYER 

FREEZING 

 

Transfer learning is now an essential method of deep 

learning where models are able to recycle knowledge 

acquired from one task or data set for use in another. Through 

pre-training of a network over an enormous, varied data set 

and then initializing with these pre-trained parameters, fine-

tuning over a more modest target data set can be rendered 

more efficient both in terms of time and performance [4]. This 

exploits the hierarchical representations obtained through 

training of the network: following exposure to large quantities 

of data, the layers within the network have extracted helpful 

features that can be well-transferred to similar tasks without 

needing to begin from a zero starting point. 

 

It is common practice in computer vision to freeze parts 
of pre-trained models during fine-tuning of the model for a 

novel task and keep previously acquired features [5]. The 

practice has been adapted in end-to-end ASR models such as 

DeepSpeech [4][6]. The idea is that the lower layers normally 

extract the basis acoustic patterns (comparable to the low-

level visual features), whereas higher layers represent more 

abstract, language-dependent information. Current 

assessments of end-to-end ASR models show that, while the 

feature hierarchy of speech may not always be as apparent as 

in vision, the higher layers do represent higher order phonetic 

and linguistic features [7]. Practically, then, the earlier layers 
capturing common acoustic features can have their 

parameters frozen while enabling the higher layers to adapt 

to the new language 

 

III. METHODOLOGY 

 

An experimental framework was formulated to 

investigate the effects of layer freezing in the scenario of ASR 

under transfer learning. The methodology is comprised of 

four principal elements: the DeepSpeech architecture, 

training procedure with layer freezing settings, 
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hyperparameters and computing environment, and dataset 
preparation as well as preprocessing pipeline 

 

A. Deep Speech Architecture 

The DeepSpeech version of version 0.7 from Mozilla 

was utilized as the base ASR architecture. The described 

implementation, deviating minimally from the model 

proposed originally by Hannun et al. [1], is documented in 

greater detail in the official documentation². The processing 

pipeline starts with the MFCC [8] extraction from the raw 

audio input, followed by a total of six layers with the form of 

a deep recurrent neural network. The network structure is 
shown in Table I. Briefly, layers 1–3 are ReLU-activated fully 

connected layers, layer 4 is an LSTM recurrent layer [11], 
layer 5 is an additional fully connected but ReLU-activated 

layer, and layer 6 is the output layer generating character 

probabilities through the use of softmax. The model is trained 

with the use of the Connectionist Temporal Classification 

(CTC) loss [9] and optimization with the use of the Adam 

optimizer [10]. 

 

Table 1 shows the DeepSpeech architecture and data 

flow, from input audio to feature extraction to output 

character probabilities (figure adapted from the official 

documentation). 

 

Table 1 Structure of the DeepSpeech Architecture. 

Layer Description Activation/Notes 

1–3 Fully connected ReLU 

4 Recurrent (LSTM) Long Short-Term Memory [11] 

5 Fully connected ReLU 

6 Output layer Softmax (character probabilities) 

 

B. Training Procedure and Layer Freezing 

We performed a series of training experiments to 

measure the effect of frozen layers in transfer learning. For 

weight initialization, we utilized an English pre-trained 

DeepSpeech model offered by Mozilla. Six training setups 

were done for both German and Swiss German, which are 

compiled in Table II. Moreover, we trained one model 

entirely from scratch with random initialization as our 
baseline comparison point (labeled the “Reference” condition 

with no transfer learning). 

During fine-tuning, the mentioned layers were frozen 

by indicating them as non-trainable, while the rest of the 

layers were trained over the target data. All the transfer 

learning models' output layer was re-initialized, as the 

character set (output labels) was different for English 

compared to the target language. This re-initialization 

provided compatibility with German or Swiss German 

transcripts. 

 

Table 2 Training Conditions for Evaluating the impact of layer freezing. 

Condition Description 

Reference Trained from scratch (random initialization, no pre-trained model). 

0 Frozen Layers Initialized from the English model; all layers are fine-tuned on target data. 

1 Frozen Layer Freeze the first layer; fine-tune layers 2–6 on target data. 

2 Frozen Layers Freeze the first two layers; fine-tune layers 3–6 on target data. 

3 Frozen Layers Freeze the first three layers; fine-tune layers 4–6 on target data. 

4 Frozen Layers Freeze the first four layers; fine-tune only the last two layers on target data. 

C. Hyperparameters and Computational Environment 

The same set of hyperparameters was utilized in all 

experiments (Table III), with no further tuning aside from 

these preselected values. Training was carried out under a 

Linux server with 96 Intel Xeon Platinum 8160 CPU cores. 

All models (both German and Swiss German) were trained 

over the same number of epochs under the same conditions to 

make an unbiased comparison of the different freezing 

strategies. 

 

Table 3 Hyperparameter Settings Utilized when Training. 

Hyperparameter Value Notes 

Batch Size 24 – 

Learning Rate 0.0005 – 

Dropout Rate 0.4 – 

Training Epochs 30 Per model (each experiment) 

Optimizer Adam – 

 
D. Datasets and Preprocessing 

The data we used for our experiments are tabulated in 

Table IV. For the German models, we utilized the training 

data from Mozilla’s German corpus [12]. This data comprises 

around 315 hours of speech, provided by about 4,823 

speakers, with utterances lasting around 3 to 5 seconds. For 

the Swiss German models, we drew upon an even smaller 

dataset of 70 hours of Swiss German speech derived from 

Bernese parliamentary debates [13]. The Swiss German 

dataset covers formal speaking with relatively few speakers 
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(around 191), and its size is considerably lower compared to 
the German corpus. 

 

The initial model for the English DeepSpeech model 

was trained with a much larger dataset (over 6500 speech 

audio hours of English data) aggregated from heterogeneous 

sources such as LibriSpeech and the English part of the 

Common Voice dataset (more information can be found in 

footnote 5). Before training, all data sets underwent common 

preprocessing steps, for example, audio-normalization and 

cleaning of transcript text (e.g. lowercasing, punctuation 

removal), to make them consistent. Table V contains an 

itemized description of each component of the data set, as 
well as the preprocessing pipeline. 

 

Along with the acoustic data, we used an external 

language model at time of inference to enhance the accuracy 

of the recognizer. To do this, we trained a tri-gram language 

model with the KenLM toolkit [14] over a large corpus of text 

consisting of public domain German-language text from 

Wikipedia articles and Europarl parliamentary debates. This 

language model we incorporated into the DeepSpeech 

decoder for both German and Swiss German trials, helping 

the system to make more accurate transcripts through 
language contextualization. 

 

Table 4 Summary of the Datasets used for Training. 

Dataset Language Hours of Audio Number of Speakers 

Pre-training English > 6500 — 

Training German 315 4,823 

Training Swiss German 70 191 

Table 5 Description of each Dataset and key Preprocessing Details. 

Component Description 

German Dataset Collected from Mozilla Common Voice; crowd-sourced speech with diverse speakers; average 

utterance length ~3–5 seconds. 

Swiss German 

Dataset 

Collected from Bernese Parliament speeches; formal register, fewer speakers; significantly lower 

volume of data compared to the German set. 

English Pretraining Combined from large-scale English corpora (LibriSpeech + Common Voice English); provides broad 

acoustic coverage for subsequent adaptation. 

 

IV. RESULTS AND DISCUSSION 

 

We compared the performance of the six training 

schemes in terms of word error rate (WER) and character 
error rate (CER) on test sets for both German and Swiss 

German. Table VI shows the WER and CER seen by each 

model configuration for German, while Table VII shows the 

WER and CER for Swiss German. “Reference” in these 

tables indicates the model trained from scratch without any 

transfer learning, and the “Improvement” column shows the 

percentage point improvement in WER with respect to that 

baseline. 

 

For the German ASR task, the baseline model of 

training without any transfer learning obtained a WER of 

70.0% with CER of 42.0%. Employing the pre-trained model 
for English with no frozen layers (0 frozen, full fine-tuning) 

reduced the WER to 63.0% (CER 37.0%), which is only a 

modest improvement of 7.0 points. However, partial freezing 

of the initial layers produced much greater improvements. 

Simply freezing the first layer improved the WER to 48.0% 

(CER 26.0%), which is a 22-point WER improvement over 

the baseline. Freezing the first two layers improved the WER 

further to 44.0% (CER 22.0%), which is the best performance 

and an improvement of 26 points over the baseline. 

Significantly, two or three frozen layers showed the same 

WER (44.0%), which means that there would have been no 
additional improvement from the third layer over the first 

two. With four frozen layers, performance actually decreased 

slightly with an increase in WER to 46.0% and CER to 

25.0%, though still significantly better than the baseline. 

These are all indications that, for German, retaining the 

lower-level layers of the acoustic features (up to two or three 

layers) gives the best result, significantly outperforming the 

baseline and the full fine-tuned model. 
 

For Swiss German, we see the same pattern with 

differing magnitude. The baseline Swiss German model (no-

transfer) achieved a WER of 74.0% (CER 52.0%). Fine-

tuning all model layers on Swiss German data (0 frozen) 

caused the WER to worsen slightly to 76.0%, which shows 

that such indiscriminate fine-tuning with no freezing can 

overfit or mis-adapt to the small Swiss German corpus. 

Freezing the early layers, in contrast, worked: with one 

frozen, the WER improved to 69.0% (CER 48.0%), about a 

5-point improvement over the baseline, and with two frozen, 

the WER further improved to 67.0% (CER 45.0%), which 
was the best performance for Swiss German (a 7-point 

improvement over baseline). Freezing three or four layers 

showed no additional improvements (WER ~68.0% in each 

case, ~6 points improvement over baseline). So, for Swiss 

German, the first two layers of pre-trained model freezation 

provided the greatest improvement, with freezation beyond 

two not bringing an additional advantage and retaining 

approximately the same performance. 

 

In total, selective freezing of layers resulted in notably 

improved accuracy for both languages over training from 
scratch. The advantage was particularly dramatic for German, 

with the larger dataset; the method of transfer learning 

reduced the WER by more than 26 absolute points. Swiss 

German, with the much smaller dataset and higher dialectal 
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variation, also showed improved performance with transfer 

learning, though the relative improvement fell short. These 
results show that the lowest layers of the deep model encode 

general acoustic representations that are relevant for many 

languages. By holding these layers constant, the fine-tuning 

procedure can concentrate on adapting higher-level layers to 

the target language’s idiosyncrasies. But freezing too many 

layers starts to restrict the model’s flexibility: the modest 

decline in performance when four layers were frozen 

indicates that the model required some of the later layers to 

adapt to language-specific features. 

 

Interestingly, we found that models with varying 
numbers of frozen layers showed very comparable training 

convergence patterns. This suggests that retaining the pre-

trained low-level feature extractors didn't impede training; 
the models all trained at around the same speed, just they 

achieved different ending accuracy levels depending upon the 

number of layers updated. This result indicates that much of 

the key learning of the new language happens higher up in the 

model after an effective set of building block features is 

established. 

 

Table 6 below presents the performance of the different 

training strategies for German, and Table VII presents the 

respective results for Swiss German. Table VIII presents a 

high-level comparison of each language's optimal freezing 
configurations and the resultant error rates. 

 

Table 6 German ASR Performance with Various Layer-Freezing Strategies (WER = Word Error Rate, CER = Character Error 

Rate). The Improvement Column Indicates WER Improvement Compared to the Baseline (Reference) Model. 

Training Strategy WER (%) CER (%) WER Improvement 

Reference (No Transfer; Random Init.) 70.0 42.0 — 

0 Frozen Layers (Full fine-tuning) 63.0 37.0 +7.0 

1 Frozen Layer 48.0 26.0 +22.0 

2 Frozen Layers 44.0 22.0 +26.0 

3 Frozen Layers 44.0 22.0 +26.0 

4 Frozen Layers 46.0 25.0 +24.0 

 

Table 7 ASR Performance for Swiss German under Different Layer-Freezing Strategies. 

Training Strategy WER (%) CER (%) WER Improvement 

Reference (No Transfer; Random Init.) 74.0 52.0 — 

0 Frozen Layers (Full fine-tuning) 76.0 54.0 –2.0 

1 Frozen Layer 69.0 48.0 +5.0 

2 Frozen Layers 67.0 45.0 +7.0 

3 Frozen Layers 68.0 47.0 +6.0 

4 Frozen Layers 68.0 46.0 +6.0 

 

Table 8 Summary of Optimal Performance Results Across Languages. 

Language Optimal # of Frozen Layers Best WER (%) Best CER (%) 

German 2–3 44.0 22.0 

Swiss German 2 67.0 45.0 

V. CONCLUSION 

 

Finally, we have shown in this work that transfer 

learning along with selective layer freezing can be an 

affordable approach to enhance ASR systems for low-
resource languages. We experimented heavily with Mozilla’s 

DeepSpeech setup on German and Swiss German and could 

confirm that by initializing the network from a pre-trained 

English model and freezing the initial layers, recognition 

performance can be improved significantly. The best gains 

were found in models with two to three frozen layers, 

suggesting that low-level phonetic features that English ASR 

systems learned are highly transferable. By preserving them 

with a frozen model, the fine-tuning can more quickly 

specialize the higher layers of the model to the target 

language. On the other hand, models trained from scratch 
(i.e., no pre-training and no transfer learning) performed 

significantly worse, demonstrating the utility of abundant 

English data in low-resource settings. 

 

Our investigation demonstrated that higher layer wise 

freezing for Swiss German (after the second layer) and for 

German (after the third layer) leads to no further 

improvements in accuracy, but the selective freezing of 

higher dense layers is still very advantageous. It not only 
increases the accuracy but also makes the fine-tuning more 

easily by decreasing the trainable parameters. There seems 

to be a trade-off between keeping pre-learned representations 

and enough flexibility for language-specific adaptation. 

Freezing more layers (even four) harms the performance 

slightly, and thus the higher layers still need some retraining 

to handle the nuances of the target language. This trade-off 

probably depends on the amount and quality of the training 

data available in the target language, and deserves further 

exploration. 

 
Overall, selective layer freezing transfer learning is a 

powerful technique for closing the performance gap between 

high and low resource languages in speech recognition. The 

results also motivate additional research into adaptive 

freezing strategies (e.g., deciding at runtime which layers to 
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freeze), and demonstrate the potential of such methodology 
towards building scalable, robust, and computationally 

efficient multilingual ASR systems. Further studies in this 

area are likely to result in ASR technology that is more 

accessible across languages and dialects, and thus increase 

the inclusivity of ASR systems globally. 

 

FUTURE WORK 

 

Further, future work should focus on improving this 

layer-freezing method and extending it to other models and 

languages. Another direction is to study how to optimize the 
selective layer freezing strategies by taking more adaptive or 

dynamic ways. For instance, optimal number of frozen layers 

can be modified according to target dataset size and quality, 

as the trade-off of preserving prelearned features to adapt can 

be different. It remains for future work whether techniques 

for being able to automatically determine or gradually 

unfreeze the weights of layers could also benefit 

performance. It would be interesting to try other pretrained 

model or models as the base. Testing the freezing strategy on 

other state-of-the-art ASR models would reveal whether the 

gains achieved are consistent across different network 

designs and potentially use richer pretrained representations 
for improving performance. In addition, an interesting 

direction is to extend the proposed transfer- learning to 

multiple languages or more complex datasets to examine its 

generality. Finally, it will be important to apply the presented 

method to languages outside of German and Swiss German 

(other language families, and also languages with phonetic 

characteristics quite different from what was considered here) 

in order to see whether the low-level acoustic features learnt 

from English can generally be successfully employed, or 

whether fine-tuning at the language specific level is required. 

Likewise, generalizing to more challenging and/or more 
diverse datasets (such as larger speech corpora with more 

speakers, dialectal variability and noisier audio), is important 

to evaluate the robustness of the method in real-world 

settings. Such experiments would help confirming the 

effectiveness of approach in multilingual setting and also 

provide practical optimizations for scalable and efficient 

speech model adaptation for low resource scenarios. 
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