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Abstract: Transcription of percussive audio without human-labeled data is still a challenging area of research for music 

information retrieval. This work presents a deep learning solution that learns to transcribe drums autonomously without 

requiring human-annotated datasets. The strategy uses a neural transcription model alongside a fixed synthesizer module 

that, collectively, iteratively improve the drum transcription by maximizing the accuracy of reconstructed audio—without 

any human-annotated datasets. The experimental results indicate that the unsupervised system provides performance that 

is on par with fully supervised models, with added scalability. These results indicate that self-supervised learning has the 

potential to actually improve the accuracy of transcription for drums, opening the door for its wider application to automatic 

music analysis and generative sound modeling. 
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I. INTRODUCTION 

 

Music transcription is the problem of approximating a 

symbolic music score y from an audio waveform x. A 

supervised learning regime is used where one learns a model 

(an analysis function F<sub>a</sub>) which estimates a 

score $\hat{y} = F_{a}(x) $ by optimizing a loss between the 

estimated and true scores on a collection of labeled examples. 

Supervised methods have predominated drum transcription 

since early times: earlier methods used hand-crafted time-
domain and spectral features, with subsequent classifiers 

(e.g., support vector machines or random forests) for 

identifying percussive events. More recent methods have 

used non-negative matrix factorization to represent 

spectrograms as decompositions into drum-specific spectral 

templates and activation patterns, and hidden Markov models 

to enforce temporal continuity on sequences of drum onsets. 

Deep neural network models have recently come into use on 

this problem: hierarchical feature representations have been 

learned directly from spectrogram inputs using convolutional 

neural networks, and recurrent neural networks have captured 
temporal relationships within percussion activity to refine 

onset and offset detection. 

 

One of the biggest limitations of supervised drum 

transcription is that large annotated datasets are hard to come 

by, limiting the generalization performance of trained models. 

Methods for synthesizing training data or using teacher–

student learning models have tried to overcome the lack of 

annotations, but each still depends on some manner of 

supervision. Unsupervised methods on the other hand present 

an annotation-independent solution that is scalable and has 

the potential to generalize further from past seen data. Taking 

cues from how humans learn musical transcription – by 

listening, playing, detecting mistakes, and practicing their 

craft – we want to create a system that is able to critique its 

own transcription performance, compute reconstruction error, 

and correct its own mistakes. In this paper, we present 

Drummer Net, an unsupervised transcription system for 

drums that is free of any external ground-truth annotations. 

Drummer Net learns from its own mistakes by improving its 
transcriptions iteratively based on how well it is able to 

reconstruct the original audio from its own predictions of the 

drum notation. 

 

II. SYSTEM DESIGN PRINCIPLES 

 

We introduce a deeply integrated neural network setup 

aimed at performing unsupervised drum transcription. This 

method intentionally avoids relying on predefined or 

manually crafted rules for identifying drum sounds. Instead, 

it uses a self-supervised learning approach to label the data. 
Our system is built on key design principles, and we back 

these up with performance benchmarks and component-by-

component tests to verify the value of each part. We also 

acknowledge certain limitations we encountered and outline 

future paths for developing truly unsupervised systems and 

expanding into more general music signal processing tasks. 
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III. DRUMMERNET: PROPOSED 

METHODOLOGY 
 

 Architectural Framework 

Our transcription system, which we call DrummerNet, 

is built from multiple modular blocks. Each block has specific 

configurations, such as the number of channels, kernel size, 

and stride, which are described in detail later. We use 

Exponential Linear Unit (ELU) activations in every 

convolutional and recurrent layer to help the network train 

quickly and stably. An overview of the full architecture can 

be found in Table II (see Section III-B). 
 

 Analysis Module (Fa) 

This module handles the raw audio input and generates 

an activation sequence for each type of drum sound. It starts 

with modified U-Net blocks to extract audio features, 

followed by layers that model how these features change over 

time (using recurrent neural networks). Finally, it applies a 

special two-part Sparsemax activation function. When in use, 

this module outputs smooth activation curves for each drum, 

which are then converted into actual drum hit times using a 

peak-picking method (explained in Section IV-C). 

 
 U-Net Architecture 

We use a one-dimensional version of the U-Net to pull 

out both short-term and long-term patterns from the audio. 

The encoder starts with a convolutional layer (128 channels, 

kernel size 3, stride 1) and is followed by ten similar layers, 

each having 50 channels. Max-pooling layers reduce the time 

dimension between these layers. This process produces a 

compact representation of the input that captures about 0.192 

seconds of audio history at a 16 kHz sample rate. The decoder 

mirrors this structure, gradually restoring the original time 

scale using six convolutional layers and upsampling steps. 
The final output is a time-compressed version of the original 

waveform, reduced by a factor of 16. 

 

 Recurrent Layer Configuration 

After feature extraction, we pass the data through three 

gated recurrent unit (GRU) layers. The first runs both forward 

and backward through time with 100 hidden units, the second 

runs forward with 50 units, and the third spreads across drum 

types with K units, where K is the number of drum classes. 

This structure helps the model learn from past and future 

information, stay consistent over time, and link different 

drum sounds together. The output from the last GRU layer 
aligns with the number of drum types in the system. 

 

 Activation Function (Sparsemax) 

Drum hits don’t happen constantly or all at once, so we 

want the model’s outputs to be sparse—both over time and 

across drum types. Sparsemax helps with this by normalizing 

the outputs like Softmax but allowing some values to be 

exactly zero. We apply it in two ways: across the different 

drum types, and across small 64-sample windows of time 

(about 64 milliseconds). This ensures only a few drums are 

active at a time, and that only a few moments in each window 

carry information. These two outputs are multiplied together 
to get the final activation signal. 

 

 Upsampling Strategy 

Because our model works on a compressed version of 

the audio timeline, we need to scale the output back to full 

resolution. We do this by inserting 15 zeros between each 

activation value, effectively increasing the sequence’s length 

by 16 times. This method avoids blurring the exact timing of 

drum hits while restoring the full 16 kHz resolution. 

 

 Synthesis Module (Fs) 
This part of the system takes the predicted activations 

and tries to rebuild the audio waveform. It uses K fixed 

convolutional filters—one for each drum type—that mimic 

how each drum would sound. Each filter turns one drum’s 

activation sequence into a rough audio signal, and these 

signals are added together to form the final mix. This module 

is used during training to make sure the model’s output stays 

consistent with the original audio. We use 11 drum classes 

(based on a simplified version of a popular drum taxonomy). 

For training, we collected single drum samples from Logic 

Pro X, covering a variety of musical styles. A different drum 

kit is randomly chosen for each batch, helping the model learn 
to handle many different drum sounds without overfitting to 

one particular type. 

 

 Synthesis Module F<sub>S</sub> 

The F<sub>s</sub> synthesizer module is designed to 

reconstruct a time-domain audio signal from the per-

instrument activation sequences $\hat{y}$ produced by 

F<sub>a</sub>. Internally, F<sub>s</sub> has K parallel 1-

D convolutional filters that are each fixed (unlearned) to 

correspond to a deliberately chosen percussive impulse 

response for a given drum instrument. Each of the filters takes 
one channel of the activation sequence $\hat{y}_k$ and 

produces a time-domain audio signal $\hat{x}k$—basically 

a rough audio “rendering” of that drum’s hits. Once the K per-

drum signals have been produced, they are added sample-

wise to create the final synthesised mixture: 

 

x^ = ∑k=1K x^k. 

 

$\hat{x} = \sum{k=1} ^{K} \hat{x}_k$ 

 

This synthesis block is employed only at training time 

to impose continuity on the predicted activations compared to 
the initial input mixture. We establish K = 11 channels for the 

drums to cover a general range of common cymbal/drum 

instruments. Table I presents the list of drum classes and their 

subclasses (the taxonomy is based on [21]; rare subclasses are 

neglected). To feed the impulse responses for each of the 

drums, we recorded one-shot drum samples from a number of 

built-in drum kits within Logic Pro X that cover rock, funk, 

pop, and soul styles. We take a random selection from one 

drum kit for each train pass, which allows the model to 

generalize across timbres (such that it is not overly 

specialized on a specific drum sound or recording room).
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Table 1 Percussive Component Taxonomy (after [21]). Asterisks Indicate Subclasses Omitted Due to Rarity in Our Dataset. 

Class Subclass(es) Description 

KD KD Kick drum 

SD SD Snare drum 

HH CHH, PHH; OHH Closed or Pedal Hi-hat; Open Hi-hat 

TT HT, MT, FT (LT) High, Mid, Floor Tom (Low Tom omitted) 

CY RDC (RDB); CRC (CHC, SPC) Ride (Ride Bell); Crash (China, Splash) 

OT TMB (SST) Tambourine (Side Stick omitted) 

 

 Training Methodology 

In self-supervised manner we do not have an access to 

the transcription error signal, because there is no ground-truth 

drum annotations given. Hence, we introduce an audio-level 

loss function $L_x(x,\hat{x})$ that forces the system to 

generate good transcriptions indirectly. The motivation for 

imposing an audio-domain loss is that by forcing the original 

input audio x and the recovered audio $\hat{x}$ from the 

synthesizer to be as close as possible, we can improve the 

alignment performance between the predicted drum events 

$\hat{y}$ and the (ground-truth) drum events y (unknown in 
practice) that LIME works at the drum note domain-level 

transcription loss, $L_y(y,\hat{y})$. 

 

Let us define $L_x$ by introducing an onset-spectrum 

similarity measure between a subset of percussive sounds 

(namely kick, snare, and hi-hat) and that is robust to timbre 

changes across different drum kits[HHJ17] This similarity 

measure is computed in the following 3 blocks: (i) Percussive 

onset extraction : both the input signal x and the reproduced 

signal $\hat{x}$ are processed in order to extract percussive 

onsets, using a median-filtering based technique. (We use a 
1024-point FFT and apply a 31-point median filtering in both 

frequency and time domain to isolate transient percussive 

events from sustained sound, as in [24]. (ii) Time–frequency 

transformation: the ON-enhanced signals from (i) are then 

converted into a time–frequency representation with a multi-

resolution constant-Q transform (CQT). I create a log spaced 

frequency spectrum (something around 8 octaves: 32Hz to 8 

kHz, 12 bins/octave) of the form: for each signal. We 

calculate the CQT using a differentiable pseudo-CQT 

method, which applies a bank of octave-spaced filters on a 

short-time Fourier transform of the signal. (iii) Spectral 

distance computation; we ultimately calculate the mean 
absolute-difference between the CQT magnitude of x, as that 

of $\hat{x}$. The resulting scalar loss $L_x$ measures how 

closely the percussive onsets of the reconstructed audio 

match those of the original audio. In particular, the 

logarithmic-frequency CQT (as opposed to a linear 

spectrogram) comparison is perceptually meaningful, as 

human perception of pitch is on a log-frequency scale. 

 

With the loss above, if the model’s predicted drum 

events are wrong, then the reconstructed audio $\hat{x}$ will 

not match x, resulting in a larger $L_x$ and therefore causing 
the model to update its parameters. When the model is over-

trained, one naturally expects that minimizing $L_x$ should 

force the model to project the predicted $\hat{y}$ closer to 

the true drum events, i.e. make the implicit loss smaller 

$L_y$. We found that this loss function strongly promotes 

percussive transients. The influence of the onset enhancement 

process on example drum signals can be seen in Fig. 1: the 

transient attack parts of the hits are kept strong, whereas non-

transient content (such as prolonged cymbal ringing or room 

ambience) is significantly suppressed. In preliminary 

experiments, we also tried to recover non-transient sections 

of sounds (e.g., the full decay of a snare drum by adding tom 

and hi-hat components in the synthesizer). Unfortunately, 

these attempts resulted in fewer sparser activations and an 

elevated level of false positives incurred by drum onset. We 

addressed the latter by designing the loss function and onset 

similarity measure such that we favor aligning the most 
salient percussive features, while being consistent with the 

minimization of the audio reconstruction loss $L_x$ and the 

implied transcription loss $L_y$. 

 

 
Fig 1 Extraction Results for (Top to Bottom) a Kick Drum, 

a Snare Drum, a Closed Hi-Hat and an Open Hi-Hat. From 
Left to Right: (a) the Original Time-Domain Waveform, (b) 

the Original Spectrogram, and (c) the Onset-Enhanced 

Spectrogram, computed by First Applying the Peak-Picking 

Heuristic from [22] (Implemented with Librosa [23]). 

 

(Figure 1 also illustrates how the onset enhancement 

process preserves sharp transients of drum hits while 

attenuating sustained energy. This encourages the model to 

consider timing and presence of drum events.) 

 

IV. EMPIRICAL EVALUATION AND ANALYSIS 

 

 Experimental Setup 

To train Drummer Net, we created a custom dataset 

composed of solo drum recordings collected from a range of 

online sources. This dataset includes 3,940 unique drum 

stems (i.e., isolated drum tracks), each averaging about 225 

seconds in length, adding up to roughly 249 hours of audio in 

total. The recordings cover a wide spectrum of styles, with a 

primary focus on Western pop and rock. We deliberately 

chose not to impose a strict balance across different drum 

instruments; instead, we prioritized diversity, allowing the 
model to learn from a naturally varied set of performances. 

As a result, we did not document the exact counts of each 

instrument class in the training data. 
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Our goal was to leverage a large, real-world, 
stylistically rich dataset to build a more robust transcription 

model. By comparison, other datasets used in the field include 

collections such as: 3,758 short drum excerpts 

(approximately 8 seconds each, totaling around 8 hours), 

60,000 synthetic drum loops (~133 hours) for data 

augmentation purposes, and an annotated corpus of 4,197 

drum recordings (~259 hours). Unlike these resources, our 

dataset features full-length performances with natural human 

variation, providing a broader training ground for the model. 

 

All audio files were resampled to 16 kHz mono and 
amplitude-normalized before being fed into the model. For 

training, we used mini-batches of 16 examples, each 

consisting of a random 2-second excerpt cropped from a 

randomly selected training track. This approach allowed 

approximately 112 unique segments to be drawn from each 

225-second track, generating about 443,000 training samples 

per epoch. We trained the model over multiple epochs to 

expose it to a wide range of segments from each recording. 

 

 Implementation Details 

Training was carried out on a single NVIDIA Tesla 

P100 GPU. Initially, we set the mini-batch size to 16, later 
increasing it to 32 once we optimized memory usage. Each 

training epoch (comprising roughly 443,000 samples) took 

about nine hours to complete. 

 

Drummer Net was implemented using PyTorch 1.0. For 

audio processing tasks like filtering and transformations (e.g., 

computing the constant-Q transform used in the loss 

function), we utilized Librosa 0.6.3. For onset detection and 

peak-picking operations, we relied on Madmom 0.16, a 

library known for its efficient music signal processing 

implementations. 
 

 Peak Detection 

To translate the model’s continuous activation outputs, 

$\hat{y}_k(t)$, into discrete drum hit events, we applied a 

heuristic peak-picking algorithm modeled after the method 

proposed in [22]. Specifically, for each drum activation curve, 

the algorithm identifies local maxima that meet both a 

minimum amplitude threshold and a minimum time 

separation constraint. In practical terms, a drum onset is 

registered if the activation crosses a certain threshold and is 
not too close in time to other detected peaks. This 

straightforward post-processing step yields onset timestamps 

for each drum class (kick, snare, and hi-hat). We tuned the 

thresholds and window sizes on a small, held-out validation 

set to ensure that the detected events closely matched 

perceptible drum hits. 

 

 Evaluation Datasets 

We evaluated Drummer Net's performance using three 

publicly available drum transcription datasets, none of which 

were seen during training: 
 

 IDMT-SMT-Drums (SMT) 

A set of 104 multitrack drum recordings totaling around 

130 minutes, released by the IDMT institute as part of the 

SMT Drums project. For evaluation, we focused solely on the 

drum tracks, without accompaniment. 

 

 Medley DB Drums (MDB) [21] 

Comprising 23 drum tracks (~20 minutes total) drawn 

from the broader MedleyDB multitrack collection, this set 

includes a variety of percussive instruments. 
 

 ENST Drums (ENST) [28] 

Around 61 minutes of solo drum recordings from the 

ENST-Drums dataset, specifically using the "wet mix" 

versions, which incorporate natural room reverberation. 

 

Following the taxonomy described in [29], we 

categorized evaluation tasks accordingly: the SMT set was 

treated as a Drum Transcription on Drum-only recordings 

(DTD) problem, focusing solely on the three core drum 

instruments (kick, snare, hi-hat). Meanwhile, the MDB and 

ENST sets posed a more challenging Drum Transcription in 
the Presence of Percussion (DTP) scenario, where drum 

tracks could be accompanied by other percussive elements or 

instrumental accompaniment. 

 

We did not perform any dataset-specific fine-tuning or 

adaptation; Drummer Net was evaluated in the exact form it 

was trained on. Table II summarizes the key properties of 

these datasets and their corresponding evaluation setups. 

 

Table 2 Summary of Dataset Configurations 

Dataset Tracks Total Duration (min) Task Type 

In-House Collection 3,940 ~14,940 Training (Non-synthetic) 

SMT (IDMT) 104 130 DTD (drum-only) 

MDB 23 20 DTP (drum + other perc.) 

ENST – 61 DTP (solo drums) 

 
 Performance Evolution During Training 

We observed the performance of Drummer Net on the 

test sets dynamically through the training process (with 

periodic evaluation checkpoints). Training ran for 6 × 10^6 

training samples (roughly 13 epochs) without employing 

early stopping. We also noticed a consistent increase of F1-

score on all three test sets (SMT, MDB, ENST) during 

training, indicating that the performance was, in the end, 

converging to some relatively stable performance level. For 

the measure of the overall performance we use the average 

F1 score "AVG" calculated as the FM measure for the 

combined three datasets. This AVG F1 from a lower initial 

value rose continuously and flattened out in the vicinity of the 

final epoch. The evolution of the per-instrument F1 scores 

(for KD, SD, HH) and the average, over the training epochs, 

are shown in Fig. 4 (see Section IV-H). The steady increase 

in the performance supports that the audio-based loss Lx is a 

good proxy for enhancing the transcription accuracy: 
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transcription predictions tend to be more accurate when the 
audio reconstruction is well-performed. 

 

 Comparison with the Baseline Methods 

For generalization testing, we tested Drummer Net in an 

eval-cross setting, as defined in [29]: the model was trained 

with no labels on in-house data, and tested on an external 

dataset (SMT) without fine-tuning on the test set. This eval-

cross setup (training on a DTP and testing on DTD) is more 

challenging than using a regular train/test split on only one 

dataset (train and test come from the same distribution). It 

enables us to test how the unsupervised model performs 
under data distribution shift. 

 

On the SMT test set (drum-only transcription task) 

Drummer Net reached an average F1 score of 0.869 

(averaged over kick, snare and hi-hat), which is better than 9 

out of 10 baseline systems described in the literature. The 

compared methods involved a number of deep learning 

techniques with recurrent neural network structures (ReL uts, 

RNN, lstmp B, tanh B, GRU ts) and unsupervised 

factorization-based ones (AM1, AM2, PFNMF, and SANMF 

methods). Of these, Drummer Net was surpassed in 

performance only by a single method, a convolutive NMF 
approach (NMFD) from [30], which scored 0.903 F1 on the 

same test. All of the other baseline systems achieved a lower 

F1 score in the range of 0.79–0.87. This is interesting 

because Drummer Net does not require labeled training data, 

and yet it can outperform the majority of fully supervised 

methods. 

 

Figure 2 shows F1 scores of Drummer Net and baseline 

systems using SMT dataset (eval-cross scenario). The 

approaches in the figure are arranged according to increasing 

overall F1 (left to right), where Drummer Net is one of the 
most effective. The deep neural network method (Drummer 

Net) clearly has an advantage of specialization in learning the 

relevant features and to predict accurately in real-time (by 

inference, we refer to a single forward pass), compared to 

many of the traditional factorization-based methods (e.g. 

NMF-based variants), which are computationally expensive 

due to iterative optimization at the test time. This 

demonstrates the feasibility of the unsupervised method in 

real applications with low-latency requirement. 

 

 Qualitative Analysis 

To gain a better qualitative insight, we also listened to 
the detailed result of Drummer Net on some of the individual 

tracks. Figure 3 presents an example of SMT transcription 

result obtained from a test recording (Real Drum 01-12). It 

shows three rows of time-series plots (one for each of the 

three drum classes: kick, snare and hi-hat), reflecting: (top) 

the raw continuous output of the analysis module Fa, (middle) 

the discrete onset events after the peak-picking, and (bottom) 

the ground-truth annotations for this track. We can observe 

that several small spurious activations in the raw output (top 

panel) are not converted to false positive detections in the 

middle panel, due to the thresholding and minimum-spacing 

criterion of the peak-picking stage. In this case, Drummer Net 
accurately captures the kick and snare hit onsets (and their 

pattern), and also the hi-hat strikes (with a number of misses 

and false positives). One pattern we note across examples is 

that the model does a very good job at precisely detecting kick 

drum onsets (this is likely due to the low-frequency type of 

the stroke), while it can be challenged to detect hi-hat 

sequences, specially if they contain a lot of rapid or soft 

(ghost) notes. In few cases, the model made double-detection 

for a single hi-hat hit or missed a very soft hi-hat ghost. Such 

qualitative observations are in accordance with the 

quantitative results: across all evaluations, the F1 scores of 
hi-hat were a bit lower than kick and snare. In conclusion, the 

qualitative analysis suggests that the self-supervised 

Drummer Net is in fact learning to separate and transcribe 

individual percussive events with high accuracy, and that the 

post-processing is useful in removing noise in the predictions. 

 

 Ablation Studies and Analysis of Components 

We performed a number of ablation studies to measure 

the contribution of each element of Drummer Net’s 

architecture and loss function. A number of variant models 

were generated, in which one component of the full system 

was removed or changed, and evaluated for transcription 
performance (average F1 across KD, SD, HH over combined 

test sets). The tables~ IV and the figure 4 report the results 

of the 'DFL' model and of its 5 variants: 

 

 DFL (Default): The entire Drummer Net setting-up as 

defined in Sections III-A through III-D. 

 SOFT: A variant which replaces the simultaneous dual 

Sparsemax activations by a more standard sequential 

Softmax-like scheme. In this one, the model first does a 

Softmax across channels, then a Softmax across time 

windows (or the other way around). This breaks the 
induced sparsity by Sparsemax. 

 MEL: A variation which employs Mel spectrogram 

instead of constant-Q transform in the loss term. Here the 

audio-domain loss Lx is calculated over a Mel-scale 

spectrogram difference (128 Mel bands), and not the 

CQT-based onset representation. 

 STFT: A variant where we compute loss Lx on a linear-

frequency STFT magnitude spectrogram (with same FFT 

size and hop as the CQT) instead of the CQT. This serves 

as a test of the necessity of the log-frequency 

representation. 

 NOE: No Onset Enhancement (the median-filtering step 

(percussive onset isolation) is discarded from the loss 

computation). In this case, the loss is attempting to align 

the full spectrogram of x and x̂ rather than onset times. 

 CONV: A loss function variant that does not consider the 

recurrent layers in the analysis module, but keeps the 

convolutional U-Net and dual Sparsemax. This tests how 

much the GRU layers contribute and this makes the 

system to become a fully convolutional (feed-forward) 

network. 
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Table 3 Summary of Ablation Study Results (Average F1-Scores). 

Variant KD SD HH Avg (Overall) 

DFL (Default) 0.885 0.860 0.868 0.871 

SOFT 0.860 0.840 0.880 0.860 

MEL 0.870 0.850 0.860 0.860 

STFT 0.865 0.845 0.855 0.855 

NOE 0.880 0.855 0.865 0.867 

CONV 0.883 0.858 0.867 0.869 

Fig. 4. F1 scores averaged over the SMT, MDB, and 

ENST databases for each drum component (KD, SD, HH) and 

the overall average (AVG) for each variant. This bar chart 

mirrors the numbers in Table IV, indicating how each 

alteration affects performance compared to the base 

configuration. The ablation results yield several takeaways: 

 

The SOFT variant (using Softmax activation in place of 

Sparsemax) underwent unstable training and produced more 

false positives, especially for kicks and snares, which 

decreased its overall accuracy. This indicates that Sparsemax 
activation in two stages is essential for stable learning and 

accurate event identification. 

 

The use of alternative front-ends for the spectra (MEL 

or STFT) created minor drops in performance compared to 

the constant-Q transform. This suggests that the multi-

resolution frequency analysis offered by the constant-Q 

representation aids in analyzing the variability in the different 

drum sounds. 

 

Eliminating the onset emphasis (NOE variant) 
produced additional spurious activations in non-transient 

areas, particularly at the beginnings of training, which 

hindered performance. The onset-enhancement term in the 

loss function seems to steer the model towards paying 

attention to transient drum hits and not sustained ones. 

 

Substitution of recurrent layers with purely 

convolutional layers (CONV) manifested little difference in 

ultimate performance. This indicates that the local 

convolutional features are quite adequate for the transcription 

task in our conditions, and that the recurrent layers (capturing 

temporal dependencies of longer scope) have only a minor 
contribution here. 

 

We can see in the SOFT variant's output that there is 

apparent degradation of transcription accuracy when we use 

Softmax over Sparsemax. Figure 5 illustrates this 

qualitatively: the Softmax-derived model generates blurry 

activations and higher numbers of spurious triggers, which 

verifies that Sparsemax's sparsity constraint plays an essential 

role in producing crisp output transcription. 

 

Fig. 5. SOFT variant transcription output with Softmax 
activation for SMT drum track “Real Drum 01-12”. Top to 

bottom: raw analysis module output, post-peak-picking 

transcription, and ground truth annotation for KD, SD, and 

HH. This shows degradation in fidelity (additional spurious 

hits, particularly for the snare and hi-hat) with Softmax 

substitution for Sparsemax. 

V. CONCLUSION 
 

We have introduced Drummer Net, an unsupervised 

deep neural model for drum transcription, and demonstrated 

with exhaustive experiments that it performs competitively 

with state-of-the-art supervised methods, surprising with its 

good generalization in realistic transcription tasks. We 

highlighted with ablation the significance of certain design 

choices: the application of Sparsemax activations and 

constant-Q representations were essential in achieving the 

performance of the system. There are many directions to 
further enhance the state of the art of unsupervised drum 

transcription, which are promising and challenging. To begin 

with, the discrete nature of drum events can be addressed with 

reinforcement learning methods. Such methods may prompt 

the network to make difficult presence/absence decisions 

about the events and pick peaks as part of the model, with the 

possible omission of the heuristic peak detecting stage. For 

instance, a reinforcement learning agent may learn to “trip” 

drum events, maximizing a reward with respect to the audio 

reconstruction quality, in the vein of the “game” strategy of 

Southall et al. Second, we are presently reliant upon an onset-
based spectral similarity loss. This can be complemented or 

complemented partially with a learned perceptual loss 

calculated in the space of deep features. For instance, with the 

use of cycle-consistency or forward-backward consistency 

loss, in the flavor of object tracking architectures like Kalal 

et al., we may make the model more able to capture the subtle 

timbre and time distinctions among drum sounds. Third, with 

our fixed synthesizer module, we specialize in drum sounds. 

In the future, we could use an introduction of an trainable 

synthesizer (e.g., with the use of audio synthesis methods in 

the neur mlad family) to generalize to additional sounds. 

Latest advancements in neural audio synthesis and 
parameterizing models of an instrument indicate that it is 

possible to learn an extensible or instrument-agnostic 

synthesizer. This would allow Drummer Net to be extended 

to mix and match additional types of percussion, or even 

melodic, instruments by acquiring their models in real time. 

These developments, when put together—using 

reinforcement learning for decision making about the events, 

perceptual loss functions which are trained, and an adaptive 

synthesizer—would, in time, result in an automated drum 

transcription system which would match fully supervised 

systems in terms of accuracy but surpass them as far as 
adaptability is concerned. 

 

FUTURE WORK: 
 

While Drummer Net is designed with a focus on 

transcription of drums, the general self-learning paradigm 
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could be applied to other instrument types as well. A potential 
direction is to make the synthesizer trainable (learnable) so 

that different types of instrument sounds other than drums can 

be modeled. A line of recent research on neural parametric 

singing models and neural audio generation of musical notes 

indicates that combining a trainable synthesizer with our 

method could enable a universal unsupervised transcription 

system. A trainable synthesizer with a self-supervised 

transcription network may be able to transcribe ensembles of 

mixtures of instruments (not only percussion) by 

simultaneously learning the sound model for each instrument 

and the transcription mechanism. A marriage of a flexible 
synthesizer with a self-supervised transcription network may 

one day make fully unsupervised transcription for full 

ensembles of music possible, achieving both instrument 

identification and transcription at the note level with no 

human annotations at all. 
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