
Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 123

Reinforcement Learning in Neuroimaging

Bhuvan Chandra Sarakam1

1Mount Vernon Nazarene University, Ohio

Publication Date: 2025/07/14

Abstract: Support learning (RL) offers a promising methodology for breaking down complex neuroimaging information

and up- grading how brain function can be understood through adaptive algorithms. This paper explores the integration

of reinforcement learning (RL) methods within neuroimaging frameworks, demon- strating how RL can be used to model

and interpret high- dimensional datasets, such as functional MRI. By leveraging sci-kit-learn’s machine learning tools,

potential applications of RL in neuroimaging are illustrated, including the classification and prediction of neural responses

to stimuli. The discoveries propose that RL could be instrumental in recognizing designs and directing neuroimaging

research, progressing customized clinical methodologies in mental and neurological wellbeing.

Keywords: Artificial Intelligence, Python.

How to Cite: Bhuvan Chandra Sarakam; (2025). Reinforcement Learning in Neuroimaging. International Journal of Innovative

Science and Research Technology, (RISEM–2025), 123-132. https://doi.org/10.38124/ijisrt/25jun172

I. INTRODUCTION

Interest in applying quantifiable artificial intelligence

(AI) techniques to neuroimaging data analysis has grown

dramat- ically in recent years. Neuroimaging offers a unique

window into brain function, yet its inherent complexity and

high dimensionality pose significant challenges for data

interpre- tation. Traditional analysis methods often fall short

in captur- ing subtle patterns of neural activity, thereby

motivating the adoption of advanced machine learning

approaches.

AI provides robust methods for extracting complex,

high- dimensional patterns from data. However, the

development of AI tools for neuroimaging is often led by

computer scientists whose expertise in neuroscience may be

limited. This divergence in domain knowledge can lead to

approaches that are technically sophisticated but not fully

aligned with neuroscientific questions. To bridge this gap,

this paper demon- strates how a widely used, general-

purpose AI toolkit, scikit- learn, can be effectively applied

to neuroimaging. This toolkit not only offers state-of-the-art

algorithms but also maintains code simplicity and
accessibility, making it suitable for both computational

experts and neuroscientists.

The focus of this work is on the programming and

method- ological aspects of neuroimaging analysis using AI.

The choice of scikit-learn is driven by its broad adoption in

the AI com- munity, its extensive ecosystem of

complementary packages, and its seamless integration with

Python-based neuroimaging tools. For a comprehensive

introduction to AI techniques in functional magnetic

resonance imaging (fMRI) analysis, [1] provides an

excellent reference.

This paper investigates several applications of
statistical learn- ing methods designed to address common

neuroimaging chal- lenges, including:

 Data Preprocessing:

Techniques to clean and prepare noisy fMRI data for

analysis.

 Model Selection:

Strategies for choosing and optimizing machine

learning models to suit the unique characteristics of

neuroimaging datasets.

 Performance Evaluation:

Metrics and methods for as- sessing the interpretability

and predictive power of the models.

Moreover, the discussion extends to the internal

mechanics of various learning techniques, providing insights

into their suitability for neuroimaging applications. The

contributions of this paper are twofold: it offers a practical

demonstration of applying scikit-learn to neuroimaging

data and presents guidelines for adapting general-purpose AI
techniques to the specific challenges encountered in

neuroscience research.

Overall, by facilitating the integration of advanced AI

methods with domain-specific preprocessing, this work aims

to enhance the interpretability and robustness of

neuroimaging analyses, ultimately contributing to a deeper

understanding of brain function.

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25jun172

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 124

II. TOOLS AND FRAMEWORKS FOR

NEUROIMAGING ANALYSIS

A. Essential Python Libraries for Neuroimaging

Python has rapidly become a cornerstone in the

neuroimaging data analysis landscape, largely due to its

well-developed sci- entific computing stack. Several

specialized libraries have been designed to facilitate

neuroimaging research, enabling efficient data manipulation,

visualization, and statistical analysis. Key libraries utilized

in this study include:

 NumPy:
NumPy is a core Python library for numerical

computing. It provides the ndarray type for handling multi-

dimensional arrays efficiently, supporting key oper- ations

like matrix multiplication and broadcasting. Many scientific

libraries, including scikit-learn, use NumPy arrays as their

main data structure.

 SciPy:

Built on NumPy, SciPy offers advanced math-

ematical functions for linear algebra, optimization, and

signal processing. By interfacing with optimized com- piled

libraries such as BLAS, Arpack, and MKL, SciPy ensures
high-performance computations, which are vital for

neuroimaging analyses.

 Matplotlib:

A widely used visualization library, Mat- plotlib

facilitates the creation of publication-quality plots. It is

seamlessly integrated with the scientific Python ecosystem

and is extensively used to visualize neu- roimaging data,

from time-series plots to complex brain activation maps [2].

 Nibabel:
This library provides robust tools for reading and

writing various neuroimaging file formats, such as NIfTI

and Analyze. It simplifies the handling of vol- umetric brain

imaging data, allowing for efficient data manipulation and

extraction.

 Nilearn:

Built on top of scikit-learn, Nilearn simpli- fies the

application of machine learning techniques to neuroimaging

datasets. It provides tools for statistical analysis, feature

extraction, and visualization, making it particularly useful
for functional MRI (fMRI) studies.

B. Scikit-learn and Its Role in Neuroimaging AI

Applications

Scikit-learn is a widely used, general-purpose machine

learn- ing library in Python, offering efficient

implementations of a variety of machine learning algorithms.

Due to its intuitive API and extensive documentation, scikit-

learn is highly accessible to researchers in neuroscience

who may not have extensive expertise in artificial

intelligence. Some key advantages of scikit-learn include:

 Extbfversatility:

The library supports a broad range of su- pervised and
unsupervised learning techniques, including regression,

classification, clustering, and dimensionality reduction.

 Extbfinteroperability:

As part of the broader Python scien- tific ecosystem,

scikit-learn integrates well with libraries like NumPy, SciPy,

and Pandas.

 Extbfease of Use:

Unlike deep learning frameworks that often require

extensive tuning, scikit-learn is designed for rapid
prototyping, making it suitable for exploratory analysis in

neuroimaging.

 Extbfmodular Structure:

The library’s design allows users to build custom

machine learning pipelines, optimiz- ing preprocessing and

model selection for specific neu- roimaging tasks.

Although other machine learning frameworks, such as

Ten- sorFlow and PyTorch, offer deep learning capabilities,

they often require more computational resources and

complex tun- ing. Furthermore, alternative AI packages like
Weka [3] and PyMVPA [4] cater to specific niches but may

not offer the same level of flexibility and accessibility as

scikit-learn.

C. Core Concepts in Scikit-learn

In scikit-learn, data is structured as 2D arrays

(matrices), where rows represent individual samples and

columns rep- resent features. This uniform structure

allows for flexibility in applying various algorithms to

neuroimaging datasets. The primary components of scikit-

learn are:

 Estimators:

These objects implement the fit method, allowing

models to learn from data. Examples include classifiers

(e.g., Support Vector Machines) and regressors (e.g., Ridge

Regression).

 Predictors:

A subset of estimators that implement the predict

method, enabling them to make predictions on new data.

Classification and regression models fall into this category.

 Transformers:

These objects implement the transform method to

preprocess data, such as standardization (e.g.,

StandardScaler), feature selection, or dimensionality

reduction (e.g., PCA). If a transformation is invertible, the

inverse_transform method is also provided.

D. Ensuring Robust Model Evaluation

A major challenge in neuroimaging machine learning

is over- fitting, where a model excels on training data but

performs poorly on new data. Cross-validation is used to
help prevent this issue:

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 125

 K-Fold Cross-Validation:

The dataset is partitioned into k subsets, with each
subset serving as a validation set while the remaining k − 1

subsets are used for train- ing. The process is repeated k

times, and the average performance score provides a robust

estimate of model generalization.

 Grid Search and Hyperparameter Tuning:

The GridSearchCV class automates the selection of op-

timal hyperparameters by evaluating multiple parameter

combinations using cross-validation. This paper utilizes grid

search to fine-tune the regularization coefficient in the

classification of neuroimaging data (see Section V).

Through the modular approach of scikit-learn,

researchers can systematically preprocess neuroimaging

data, apply various learning techniques, and rigorously

evaluate model perfor- mance. The following sections delve

into specific applications of these methods in neuroimaging

analysis.

III. DATA READINESS: FROM X-RAY

VOLUMES TO AN INFORMATION

MATRIX

Prior to applying measurable learning strategies to

neuroimag- ing information, it is fundamental to perform

standard prepro- cessing steps. For utilitarian attractive

reverberation imaging (fMRI), regular preprocessing steps
incorporate movement revision, cut timing remedy, co-

enlistment with a physical picture, and standardization to a

standard layout, like the Montreal Neurological Foundation

(MNI) space. Normal pro- gramming bundles utilized for

these errands are SPM [5] and FSL, with a Python

interface accessible through the nipype library [6]. In this

segment,The process of shaping preprocessed neuroimaging

data into a format suitable for input into scikit-learn is

outlined. The primary goal is to create a data matrix, denoted

as X, and optionally, a target variable y for prediction.

A. Spatial Resampling

Neuroimaging information are regularly put away in

NIfTI de- sign as four-layered information (3D spatial

aspects with time series for each voxel). These information

likewise incorporate a relative change framework, which

relates voxel records to world directions. While working

with different subjects, the information for every individual

is enlisted to a typical layout (e.g., MNI or Talairach),

adjusting them to a common relative change during

preprocessing.

The relative grid can catch anisotropy in the
information, where the distance between two voxels may

differ depending upon the course. This spatial data is

significant for calcula- tions that use the spatial design of the

information, like the searchlight examination method.

To perform picture resampling and change the

spatial goal of the information, the

scipy.ndimage.affine_transform capability can be used.

Resampling includes an introduction, which might adjust

the information, and, subsequently, ought to be done

carefully. Downsampling is a typical procedure to diminish
the information size for handling, with normal goals being

2mm or 3mm. Be that as it may, headways in MR material

science are prompting higher spatial goal checks. The

relative grid can likewise encode scaling factors for each

aspect.

B. Signal Cleaning

Neuroimaging data are inherently noisy due to the

complex and indirect nature of data acquisition. A low

signal-to-noise ratio (SNR) can obscure meaningful brain

activity, thereby hindering subsequent analysis. To address
this, several prepro- cessing steps are employed to clean the

signal by removing trends and artifacts. The key steps in

signal cleaning include:

Detrending: Detrending involves the removal of sys-

tematic linear (or polynomial) trends from the time

series of each voxel. Since the absolute intensity of a

voxel is less informative than its temporal variation,

detrending helps isolate the relevant fluctuations in brain

activity. In prac- tice, detrending is commonly

implemented using SciPy’s scipy.signal.detrend function,

which subtracts the best-fit line from the data. This step is
crucial to eliminate scanner drifts and other slow

fluctuations that could bias subsequent analyses.

Normalization: Normalization scales the time series

data such that the variance of each voxel is standardized,

typi- cally to 1. This process is essential because many

machine learning algorithms assume that all features

contribute equally; unnormalized data can lead to certain

voxels dominating the analysis due to their larger

variance. By normalizing the data, each voxel is placed on

an equal footing, ensuring that the algorithm’s performance
is not skewed by differences in intensity ranges.

Frequency Filtering: Physiological noise (e.g., heart

rate, respiration) and scanner-related artifacts often

introduce un- wanted high-frequency and low-frequency

signals in the data. Frequency filtering targets these

components by removing frequencies outside the band of

interest. Techniques such as the Fourier Transform (via

scipy.fftpack.fft) and Butterworth filters (using

scipy.signal.butter) can be applied to selectively retain the

frequency components that are most likely to reflect neural
activity, while discarding the rest.

C. Transformation from 4D Images to a 2D Array:

Masking

Neuroimaging datasets are typically acquired as 4D

images, with three spatial dimensions and one temporal (or

trial-based) dimension. However, most machine learning

algorithms, such as those in scikit-learn, require data to be

organized in a 2D matrix format, where each row represents

a sample and each column a feature.

 Brain Masking:
To convert 4D images into a 2D matrix while retaining

only the informative regions, a brain mask is applied. A

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 126

brain mask is a binary image that identifies voxels within

the brain, effectively excluding areas that contain only noise
or non-brain tissue. This masking process reduces the

dimensionality of the data by focusing the analysis on

voxels that are expected to contain relevant signal.

Fig 1 Conversion of Brain Scans into a 2D Data Matrix. Uninformative Voxels are Removed using a Brain Mask.

Applying the Mask: After the brain mask is generated

or provided, it is applied to the functional data using

NumPy’s advanced indexing with boolean arrays. The

resulting 2D matrix, conventionally denoted as X, contains

only the time series data of the voxels within the mask. The

following code snippets illustrate this process:

Listing 1: Loading Mask and Functional Data import

nibabel as nib import numpy as np # Load the brain mask

and functional (fMRI) data mask =

nib.load(’mask.nii’).get_fdata() func_data =

nib.load(’epi.nii’).get_fdata() # Convert the mask to a

boolean array mask = mask.astype(bool) Once the data are

loaded, the mask is applied to extract the relevant voxel time

series:

Listing 2: Applying Mask and Extracting Data # Apply

the brain mask: each row corresponds to a time point, each

column to a voxel X = func_data[mask].T # Optionally,
restore the data structure by mapping the masked data back

to the original volume unmasked_data =

np.zeros_like(func_data) unmasked_data[mask] = X.T

D. Data Visualization

Visualization plays a critical role in neuroimaging by

pro- viding intuitive insights into both anatomical and

functional aspects of the brain. Commonly, Regions of

Interest (ROIs) are visualized on axial slices, with activation

maps overlaid on an anatomical background.

E. Activation Map Overlay

An activation map highlights regions of the brain that

exhibit significant activity changes. To visualize such maps:

 An anatomical (structural) image is loaded to serve as a

background.

 An activation map is generated, either from statistical

tests or by thresholding.

 The activation map is overlaid on the anatomical image

to identify areas of significant activation

The code below demonstrates how to overlay an

activation map onto an anatomical slice using Matplotlib. In

this exam- ple, a synthetic activation map is created by

thresholding the anatomical image to isolate high-intensity

voxels.

Listing 3: Visualization of the Activation Map import

matplotlib.pyplot as plt import numpy as np import nibabel

as nib # Load the anatomical background image bg_img =

nib.load(’bg.nii.gz’) bg = bg_img.get_fdata() # Create a

synthetic activation map by thresholding values above 6000

activation_map = bg.copy() activation_map[activation_map
< 6000] = 0 # Display the anatomical background on a

selected axial slice plt.imshow(bg[..., 10].T, origin=’lower’,

cmap=’gray ’) # Overlay the activation map using a hot

colormap for visual contrast masked_activation =

np.ma.masked_equal(activation_map, 0)

plt.imshow(masked_activation[..., 10].T, origin=’ lower’,

interpolation=’nearest’, cmap=’hot’) # Remove axes for a

cleaner display and render the plot plt.axis(’off’) plt.show()

F. Advanced Visualization Techniques

Beyond the basic overlay, several enhancements can
improve visualization:

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 127

 Anatomical Templates:

Incorporate standard brain tem- plates to provide
spatial context.

 Colormap Customization:

Experiment with different colormaps to maximize

contrast and readability.

 Interactive Tools:

Use interactive visualization libraries, such as NiPy’s

plot_map, for dynamic exploration of activation patterns.

The integration of an anatomical background with
activation overlays is commonly facilitated by NumPy’s

masked array functionality (numpy.ma.masked_array),

which handles zero-valued or non-significant data

gracefully. Such visualiza- tions are critical for interpreting

the spatial distribution of brain activity and for identifying

regions that merit further investigation.

IV. DECODING THE PSYCHOLOGICAL

PORTRAYAL OF ITEMS IN THE BRAIN

Decoding in neuroimaging refers to the process of

constructing predictive models that infer cognitive or
phenotypic states from brain imaging data. This

framework stands in contrast to encoding, where the goal is

to predict brain activity from external stimulus descriptors.

Decoding techniques are pivotal for understanding how

specific mental representations are instantiated in neural

activity and have important applications in both basic

research and clinical contexts.

A seminal demonstration of decoding is provided by

Haxby et al. [7]. In that study, visual stimuli spanning eight

distinct categories were presented to six subjects across 12
sessions, and the objective was to classify the stimulus

category based on the corresponding fMRI data. This work

established a benchmark that has since been extended and

analyzed in numerous studies [8], [9], [10], [4]. For the

purposes of this paper, the analysis is simplified by focusing

on data from a single subject and reducing the number of

stimulus categories to two (faces and houses).

In this context, a target variable y represents the

stimulus category, thereby formulating the problem as a

supervised classification task. This is in contrast to
regression problems where y would assume continuous

values (e.g., age or reaction times).

A. Classification with Univariate Feature Selection and

Linear SVM

The high dimensionality of fMRI data (typically tens

of thousands of voxels) poses significant challenges due to

the curse of dimensionality, especially when the number of

sam- ples (time points) is limited. To address this, a two-

step approach is employed: univariate feature selection

followed by classification using a linear Support Vector

Machine (SVM).

 Feature Selection::

Each voxel is evaluated independently using statistical
tests (such as an F-test) to determine its discriminative

power. By retaining only the top-ranking vox- els, the

dimensionality of the data is reduced, which helps mitigate

overfitting and enhances the classifier’s performance.

Formally, if the full set of features is denoted by F, a

subset

Fselected ⊂ F is chosen such that

Fselected = {fi ∈ F : p(fi) < α},

where p(fi) is the p-value corresponding to voxel fi

and α is a predefined significance threshold.

 Linear SVM::

Once the feature space has been reduced, a linear SVM

is applied. The SVM seeks to identify an optimal hyperplane

that separates the two classes. Its decision function is given

by

f (x) = wT x + b,

Where w is the weight vector, x is the feature vector

(repre- senting the selected voxel time series), and b is the

bias term. The linear SVM is particularly effective in high-

dimensional spaces and tends to yield robust classification

performance even with relatively few training samples.

A. Searchlight Analysis

Searchlight analysis is a spatially localized decoding

technique that provides a fine-grained map of informational

content across the brain. In this method, a small
spherical region (the searchlight) is defined around each

voxel. Within each searchlight, a classifier (typically an

SVM) is trained using only the data confined to that region.

The cross-validated prediction accuracy of the classifier is

then assigned to the central voxel of the searchlight.

This approach allows for the detailed mapping of

regions where local patterns of activity contain

discriminative infor- mation about the stimulus. However,

because the analysis requires training a classifier for each

voxel (or overlapping set of voxels), it is computationally
intensive. Nevertheless, the spatial specificity provided by

searchlight analysis makes it a valuable tool for

understanding the localized contributions of different brain

regions to cognitive processes.

B. Results

The decoding analysis reveals that voxels with the

highest classifier weights are predominantly located in brain

regions known to be involved in processing the stimuli—for

example, regions responsive to faces or houses. While the

global SVM classifier provides an overall ranking of brain
regions based on their discriminative power, the searchlight

analysis yields a spatial map that details the local decoding

performance.

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 128

The implementation of this decoding model is

encapsulated in the script haxby_decoding.py, which is
publicly avail- able on GitHub. This script encompasses all

stages of the analysis, from data preprocessing and feature

selection to classifier training and visualization of results.

One of the key strengths of the scikit-learn toolkit is its

modular design; for instance, the linear SVM classifier can

be easily replaced with alternative models, such as

ElasticNet or Logistic Regression, by modifying only a

single line of code. Similarly, non-linear classifiers such as

Gaussian Naive Bayes can be substituted with minimal

changes (e.g., replacing the attribute coef_ with theta_).

Overall, the decoding methods presented here

demonstrate how predictive models can elucidate the

relationship between brain activity and cognitive states,

providing insights that may drive further advances in

neuroimaging research.

V. ENCODING CEREBRUM ACTION AND

DECIPHERING VISUAL STIMULI

Previous studies have shown that brain activity in the

visual cortex can predict the type of visual stimulus shown

to a subject [7]. In this section, we extend this work by
linking the presented visual stimulus directly to the

corresponding FMRI activity. We use a set of 10 × 10 binary

images. In the original study, random binary images were

used for training,

while structured images (e.g., shapes and letters) were

used for testing. For simplicity, our work focuses only on

the training set, and cross-validation is used to obtain

reliable performance metrics on new data.

Relationship between visual stimulus pixels and brain
voxels is examined using two complementary frameworks:

 Decoding: Reconstructing the visual stimulus from

recorded brain activity.

 Encoding: Predicting fMRI activity from visual stimulus

descriptors.

 Decoding Visual Stimuli from Brain Activity

In the decoding framework, the objective is to

reconstruct the binary visual stimulus that was presented to

the subject based on the corresponding brain activity. Given
the binary nature of the stimuli, the problem is formulated

as a classification task. However, while binary classification

is well suited for discrete stimuli, it may not directly extend

to cases involving continuous stimuli such as grayscale

images.

In this study, I compare several models to evaluate

their performance in reconstructing the stimulus:

 An ℓ2-regularized Support Vector Machine (SVM), as

previously applied in similar experiments.

 A logistic regression model, which provides a proba-
bilistic interpretation of the classification decision.

 An ℓ1-regularized SVM, which promotes sparsity in the

model parameters by utilizing a squared hinge loss.

Feature selection plays a critical role in the decoding

pipeline due to the high dimensionality of fMRI data.

Typically, a brain mask is applied to reduce the feature

space to a subset of ap- proximately 40,000 voxels over

1,400 time points (samples). In such a high-dimensional

setting, univariate feature selection is essential to mitigate

the curse of dimensionality. Specifically, a statistical test

(e.g., an F-test) is applied to each voxel to determine its

discriminative power, and only the top features are retained

for classification.

The following Python code snippet illustrates a

pipeline that first performs univariate feature selection and

then applies logistic regression with an ℓ1 penalty to

encourage sparsity:

Listing 4: Pipeline with Logistic Regression

pipeline_LR = Pipeline([(’feature_selection’,

SelectKBest(f_classif, 500)), (’classifier’,

LogisticRegression(penalty=’l1’, C=0.05))])

This pipeline first selects the top 500 features based

on the F-test statistic and then trains a logistic regression
classifier on the reduced feature set. The use of an ℓ1

penalty helps in identifying the most relevant voxels by

driving the coefficients of less informative features towards

zero.

 Encoding fMRI Data from Stimulus Descriptors

In contrast to decoding, the encoding framework aims

to pre- dict the fMRI response given the visual stimulus

descriptors. This approach quantifies the extent to which the

stimulus can explain the variability in each voxel’s signal. A

common metric for evaluating encoding models is the
predictive r2 score, which measures the proportion of

variance in the fMRI signal that is captured by the model

relative to a baseline constant model.

For the encoding task, ridge regression is employed.

Ridge regression, which applies an ℓ2 penalty, is well-suited

for handling multicollinearity and stabilizing estimates in

high- dimensional spaces. The model is trained using cross-

validation to ensure that the performance metric is robust

against overfitting. The following Python code snippet

demon- strates the evaluation process via cross-validation:

Listing 5: Ridge Regression Evaluation for Encoding #

For each voxel, compute the predictive rˆ2 score using

cross-validation scores = [] for train, test in cv: # Fit the

ridge regression model on training data

model.fit(X_train[train], y_train[train]) # Predict on test data

pred = model.predict(X_train[test]) # Compute the rˆ2 score

for the current voxel score = 1.0 - np.sum((y_train[test] -

pred)**2) / \ np.sum((y_train[test] - np.mean(y_train[

test]))**2) scores.append(score) mean_scores =

np.mean(scores, axis=0)

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 129

Alternative regression methods, such as Lasso

regression, can be used if a sparser solution is desired.
However, Lasso may introduce additional computational

complexity due to the need for tuning the regularization

parameter.

 Receptive Fields and Sparse Regression:

Due to the retino- topic organization of early visual

areas, only a small subset of stimulus pixels is typically

responsible for driving the activity in each voxel of the

primary visual cortex. Neighboring voxels are expected to be

influenced by adjacent regions of the stimulus. To identify

these localized relationships, sparse linear regression
techniques are employed. One effective method is the

LassoLarsCV estimator, which utilizes the Least Angle

Regression (LARS) algorithm combined with cross-

validation to select a sparse set of stimulus features that

best explain the voxel responses. This approach effectively

reveals the receptive fields of neurons in the visual cortex.

 Results

Figure 2 summarizes the results from both the
decoding and encoding analyses. In the decoding

experiment, Figures 2(a) and (c) display classifier weight

maps obtained from logistic regression and SVM,

respectively, focusing on voxels in V1 and adjacent

retinotopic areas. Figures 2(b) and (d) present the

reconstruction accuracy per pixel for the respective models.

The results indicate that both classifiers yield similar per-

formance, with notably higher reconstruction accuracy in

the foveal region, likely due to its denser neuronal

population.

In the encoding experiment, Figure 2(e) illustrates the

recep- tive fields corresponding to voxels with the highest

predictive scores, while Figure 2(f) shows reconstruction

accuracy as a function of stimulus pixel position. The

convergence of results from both encoding and decoding

analyses underscores a consistent relationship between

specific stimulus pixels and brain voxel responses, thereby

reinforcing the validity of the methodologies.

Fig 2 Miyawaki Results. Top (Decoding): (a)/(c) Classifier Weights from Logistic Regression/SVM; (b)/(d) Reconstruction

Accuracy per Pixel. Bottom (Encoding): (e) Receptive fields and (f) Reconstruction Accuracy by Stimulus pixel.

The implementation of these models is encapsulated in

the script haxby_decoding.py, which is available on GitHub.

This script integrates all stages—from data preprocessing

and feature selection to classifier training and visualiza-

tion—demonstrating the versatility and modularity of the

scikit-learn toolkit. Owing to this modular design, switching

between different classifiers (e.g., from SVM to

ElasticNet or Logistic Regression) requires minimal
modifications to the code, thereby facilitating rapid

experimentation and model optimization.

Overall, the integrated decoding and encoding

analyses not only demonstrate the feasibility of predicting

both visual stimuli and fMRI responses but also provide

critical insights into the spatial and functional organization of

the visual cortex. Such insights can pave the way for future

applications in cognitive neuroscience and brain-computer

interfacing.

VI. RESTING-STATE AND PRACTICAL

AVAILABILITY ANALYSIS

Indeed, even without outside conduct or clinical

factors, in- vestigating the construction of mind cues can

give critical experiences. Truth be told, [11] showed that

cerebrum en- actment displays intelligible spatial examples

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 130

during resting states. These associated voxel actuations

structure practical organizations that line up with notable
undertaking related networks.

Biomarkers found through prescient demonstrating of

resting- state fMRI could be especially valuable in situations

where subjects can’t perform explicit undertakings. In this

review,A dataset comprising resting-state fMRI data from

both control subjects and ADHD (Attention Deficit

Hyperactivity Disor- der) patients is examined. These

subjects were studied with minimal specific tasks to capture

their brain activity at rest.

Resting-state fMRI data is considered unlabeled, as

brain activity cannot be directly associated with a particular

outcome variable. This type of problem is classified as

unsupervised learning in machine learning. To extract

meaningful networks or regions, techniques that group

similar voxels based on their time series are employed.

A widely used technique in neuroimaging for this purpose

is Independent Component Analysis (ICA), which serves as

the focus of the first model. Additionally, the use of

clustering methods to identify nearly homogeneous regions

will be demonstrated.

A. Independent Part Investigation (ICA) to Concentrate

Net- works

ICA is an outwardly hindered source segment

methodology that hopes to crumble a multivariate sign into

free parts by growing their non-Gaussianity. A model

delineation of ICA, where ICA is used to confine covering

voices from various speakers using beneficiaries put around

a room.

 ICA in Neuroimaging:

ICA is seen as the standard system for isolating
organizations from resting-state fMRI data. A couple of

systems have been made to combine ICA re- sults across

various subjects. For example, [12] proposed a

dimensionality decline approach (using PCA), followed by

association of time series, which is the strategy

displayed in this model. Then again, use dimensionality

decline got together with authorized relationship
assessment to add up to data from different subjects. The

FSL suite consolidates Melodic [13], which utilizes an

association procedure, but it isn’t distinct in this work.

 Application:

Prior to applying ICA, the information goes through

preprocessing steps, including focusing and detrend- ing of

the time series. This guarantees that straight patterns are not

caught by ICA. The FastICA calculation is then applied to

the subsequent time series. Utilizing the scikit-learn library,

ICA is direct to carry out because of the transformer idea.
The information network is rendered for spatial ICA, where

voxels are considered as irregular factors and the time

focuses are treated as fixed. The subsequent parts address

different sign designs, for example, commotion and resting-

state orga- nizations. For the investigation,The focus is on

extracting only 10 components, which represent the primary

signal patterns.

 Results:

Figure 3 illustrates a comparison between a basic

concat-ICA approach implemented in this work and more

advanced multi-subject ICA methods. Although both tech-
niques were executed using scikit-learn, the detailed imple-

mentation of CanICA is not provided here. For

demonstration purposes, the default mode network—a

prominent resting- state network—is highlighted. Initial

observations suggest that both CanICA and Melodic’s

concat-ICA produce results with reduced noise and yield

comparable outcomes, even though definitive conclusions

cannot be drawn from a single example. Scikit-learn gives a

few other framework disintegration strate- gies under the

’sklearn.decomposition’ module. One option in contrast to

ICA is word reference realizing, which applies a ℓ1
regularization to the separated parts. This outcomes in

sparser and more minimized parts than those got with

ICA, which commonly address full-mind action and require

thresholding for significant understanding.

Fig 3 Default Mode Network Components Obtained by three Methods: (left) simple Concat-ICA, (Middle) CanICA (Nilearn),

and (right) Melodic’s Concat-ICA. Data Were nor- Malized for Visualization.

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 131

B. Learning Practically Homogeneous Locales with

Cluster- ing
From an AI viewpoint, bunching strategies bunch tests

into groups by expanding a comparability measure between

the examples inside each bunch. When applied to voxels

from a useful mind picture, this action can be founded on

utilitarian comparability, bringing about bunches of voxels

that address practically homogeneous locales.

 Approaches:

Different grouping approaches exist, each with its own

assets and impediments. Many require the quan- tity of

groups to be foreordained, a decision that relies upon the
application. A bigger number of groups gives a better

portrayal of the information, saving a greater amount of the

first sign, yet additionally increments model intricacy. Some

bunching techniques can integrate spatial data, delivering

spatially ad- joining groups, otherwise called packages. In

this segment, Two basic and quick clustering approaches are

depicted.

 Ward Clustering:

utilizes a base up various leveled ap- proach where

voxels are logically gathered into groups. In scikit-learn,

primary data can be presented through a network chart,
which compels the converges to just adjoining voxels,

prompting coterminous packages.

 K-Means Clustering:

partitions the data into clusters by assigning each voxel

to the nearest centroid, effectively group- ing similar data

points. However, because K-Means does not inherently

enforce spatial coherence, spatial smoothing is often applied

prior to clustering to improve the meaningfulness of the

results.

To apply clustering algorithms effectively, the data

must first be prepared using standard preprocessing steps to

create an appropriate data matrix. Since both Ward

clustering and K- Means rely on second-order statistical

properties, applying PCA for dimensionality reduction while

preserving these statistics can enhance performance. It is

important to recognize that clustering methods are designed

to group samples—in this case, the aim is to cluster

voxels. Consequently, when the data matrix is organized

as (time points × voxels), it must be reshaped accordingly

before being used with scikit- learn’s clustering estimators.
While scikit-learn offers the WardAgglomeration

transformer for feature agglomera- tion via Ward

clustering, a direct equivalent for K-Means is not provided.

 Results:

The clustering outcomes are presented in Figure 4.

Although clustering highlights large-scale brain structures,

such as the calcarine sulcus (see Figure 4a), it does not

necessarily yield sharply defined anatomical regions.

Instead, clustering serves as a dimensionality reduction tool

that groups similar voxels, providing a coarse overview of

the data struc- ture. K-Means, which does not enforce spatial
contiguity, may produce numerous small clusters. In

contrast, Ward clustering, by imposing spatial constraints,

naturally yields more con- tiguous regions. Being a bottom-

up method, Ward clustering generally performs better when

a high number of clusters is considered. Although scikit-

learn provides several clustering techniques, selecting the

optimal one for fMRI time-series analysis necessitates a

detailed understanding of the specific application.

Fig 4 Brain Parcellations Obtained via Clustering. Colors are Assigned Arbitrarily.

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/

Special Issue, RISEM–2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jun172

IJISRT25JUN172 www.ijisrt.com 132

VII. CONCLUSION

This study demonstrated the use of AI methods on

fMRI data by leveraging the scikit-learn Python toolkit to

address key challenges in neuroscience. Our work shows

that supervised approaches, such as encoding and decoding,

can effectively link brain images with external information,

while unsuper- vised methods uncover natural patterns in

resting-state data. Although the Python implementations are

straightforward and user-friendly, challenges remain in data

preprocessing, model selection, and result interpretation.

Integrating scikit-learn with neuroimaging-specific libraries

like Nilearn is essential for streamlining these processes.

The techniques presented here are just a small sample

of the wide range of applications in neuroimaging. By

combining scikit-learn’s diverse algorithms with customized

preprocess- ing steps, researchers can reveal new insights—

such as con- nectivity patterns obtained through sparse

inverse covariance estimation. This seamless integration of

AI tools and neu- roimaging workflows promises to drive

further breakthroughs in understanding brain function.

Future efforts should focus on refining these methods

and exploring additional models and preprocessing
strategies. The integration of general-purpose AI toolkits

with domain-specific approaches holds great promise for

advancing both scientific research and clinical applications.

REFERENCES

[1]. T. Hastie, R. Tibshirani, and J. J. H. Friedman, The

elements of statistical learning. Springer New York,

2001, vol. 1.

[2]. J. D. Hunter, “Matplotlib: A 2d graphics

environment,” Computing In Science & Engineering,
vol. 9, no. 3, pp. 90–95, 2007.

[3]. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, and I. H. Witten, “The weka data mining

software: an update,” ACM SIGKDD Explorations

Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[4]. M. Hanke, Y. O. Halchenko, P. B. Sederberg, S. J.

Hanson, J. V. Haxby, and S. Pollmann, “PyMVPA:

A python toolbox for multivariate pattern analysis of

fMRI data,” Neuroinformatics, vol. 7, no. 1, pp. 37–

53, 2009.

[5]. K. Friston, Statistical parametric mapping: the
analysis of functional brain images. Academic

Press, 2007.

[6]. K. Gorgolewski, C. D. Burns, C. Madison, D.

Clark, Y. O. Halchenko, M. L. Waskom, and S. S.

Ghosh, “Nipype: a flexible, lightweight and

extensible neuroimaging data processing

framework in python.” Front Neuroinform, vol. 5, 08

2011. [Online]. Available:

http://dx.doi.org/10.3389/fninf.2011.00013

[7]. J. V. Haxby, I. M. Gobbini, M. L. Furey, A. Ishai, J.

L. Schouten, and

[8]. P. Pietrini, “Distributed and overlapping

representations of faces and objects in ventral
temporal cortex,” Science, vol. 293, no. 5539, p.

2425, 2001.

[9]. S. J. Hanson, T. Matsuka, and J. V. Haxby,

“Combinatorial codes in ventral temporal lobe for

object recognition: Haxby (2001) revisited: is there a

“face” area?” Neuroimage, vol. 23, no. 1, pp. 156–

166, 2004.

[10]. Detre, S. Polyn, C. Moore, V. Natu, B. Singer, J.

Cohen, J. Haxby, and

[11]. K. Norman, “The multi-voxel pattern analysis (mvpa)

toolbox,” in Poster presented at the Annual Meeting
of the Organization for Human Brain Mapping

(Florence, Italy). Available at: http://www. csbmb.

princeton. edu/mvpa, 2006.

[12]. S. J. Hanson and Y. O. Halchenko, “Brain reading

using full brain support vector machines for object

recognition: there is no “face” identification area,”

Neural Computation, vol. 20, no. 2, pp. 486–503,

2008.

[13]. Biswal, F. Zerrin Yetkin, V. Haughton, and J. Hyde,

“Functional connectivity in the motor cortex of

resting human brain using echo- planar MRI,” Magn

Reson Med, vol. 34, p. 53719, 1995.
[14]. V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J.

Pekar, “A method for making group inferences from

fMRI data using independent component analysis.”

Hum Brain Mapp, vol. 14, p. 140, 2001.

[15]. F. Beckmann and S. M. Smith, “Probabilistic

independent component analysis for functional

magnetic resonance imaging,” Trans Med Im, vol.

23, pp. 137–152, 2004.

https://doi.org/10.38124/ijisrt/25jun172
http://www.ijisrt.com/
http://dx.doi.org/10.3389/fninf.2011.00013
http://www/

