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research, progressing customized clinical methodologies in mental and neurological wellbeing. 
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I. INTRODUCTION 
 

Interest in applying quantifiable artificial intelligence 

(AI) techniques to neuroimaging data analysis has grown 

dramat- ically in recent years. Neuroimaging offers a unique 

window into brain function, yet its inherent complexity and 

high dimensionality pose significant challenges for data 

interpre- tation. Traditional analysis methods often fall short 

in captur- ing subtle patterns of neural activity, thereby 

motivating the adoption of advanced machine learning 

approaches. 

 
AI provides robust methods for extracting complex, 

high- dimensional patterns from data. However, the 

development of AI tools for neuroimaging is often led by 

computer scientists whose expertise in neuroscience may be 

limited. This divergence in domain knowledge can lead to 

approaches that are technically sophisticated but not fully 

aligned with neuroscientific questions. To bridge this gap, 

this paper demon- strates how a widely used, general-

purpose AI toolkit, scikit- learn, can be effectively applied 

to neuroimaging. This toolkit not only offers state-of-the-art 

algorithms but also maintains code simplicity and 
accessibility, making it suitable for both computational 

experts and neuroscientists. 

 

The focus of this work is on the programming and 

method- ological aspects of neuroimaging analysis using AI. 

The choice of scikit-learn is driven by its broad adoption in 

the AI com- munity, its extensive ecosystem of 

complementary packages, and its seamless integration with 

Python-based neuroimaging tools. For a comprehensive 

introduction to AI techniques in functional magnetic 

resonance imaging (fMRI) analysis, [1] provides an 

excellent reference. 

This paper investigates several applications of 
statistical learn- ing methods designed to address common 

neuroimaging chal- lenges, including: 

 

 Data Preprocessing:  

Techniques to clean and prepare noisy fMRI data for 

analysis. 

 

 Model Selection: 

Strategies for choosing and optimizing machine 

learning models to suit the unique characteristics of 

neuroimaging datasets. 

 

 Performance Evaluation: 

Metrics and methods for as- sessing the interpretability 

and predictive power of the models. 

 

Moreover, the discussion extends to the internal 

mechanics of various learning techniques, providing insights 

into their suitability for neuroimaging applications. The 

contributions of this paper are twofold: it offers a practical 

demonstration of applying scikit-learn to neuroimaging 

data and presents guidelines for adapting general-purpose AI 
techniques to the specific challenges encountered in 

neuroscience research. 

 

Overall, by facilitating the integration of advanced AI 

methods with domain-specific preprocessing, this work aims 

to enhance the interpretability and robustness of 

neuroimaging analyses, ultimately contributing to a deeper 

understanding of brain function. 
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II. TOOLS AND FRAMEWORKS FOR 

NEUROIMAGING ANALYSIS 
 

A. Essential Python Libraries for Neuroimaging 

Python has rapidly become a cornerstone in the 

neuroimaging data analysis landscape, largely due to its 

well-developed sci- entific computing stack. Several 

specialized libraries have been designed to facilitate 

neuroimaging research, enabling efficient data manipulation, 

visualization, and statistical analysis. Key libraries utilized 

in this study include: 

 

 NumPy:  
NumPy is a core Python library for numerical 

computing. It provides the ndarray type for handling multi-

dimensional arrays efficiently, supporting key oper- ations 

like matrix multiplication and broadcasting. Many scientific 

libraries, including scikit-learn, use NumPy arrays as their 

main data structure. 

 

 SciPy:  

Built on NumPy, SciPy offers advanced math- 

ematical functions for linear algebra, optimization, and 

signal processing. By interfacing with optimized com- piled 

libraries such as BLAS, Arpack, and MKL, SciPy ensures 
high-performance computations, which are vital for 

neuroimaging analyses. 

 

 Matplotlib:  

A widely used visualization library, Mat- plotlib 

facilitates the creation of publication-quality plots. It is 

seamlessly integrated with the scientific Python ecosystem 

and is extensively used to visualize neu- roimaging data, 

from time-series plots to complex brain activation maps [2]. 

 

 Nibabel:  
This library provides robust tools for reading and 

writing various neuroimaging file formats, such as NIfTI 

and Analyze. It simplifies the handling of vol- umetric brain 

imaging data, allowing for efficient data manipulation and 

extraction. 

 

  Nilearn:  

Built on top of scikit-learn, Nilearn simpli- fies the 

application of machine learning techniques to neuroimaging 

datasets. It provides tools for statistical analysis, feature 

extraction, and visualization, making it particularly useful 
for functional MRI (fMRI) studies. 

 

B. Scikit-learn and Its Role in Neuroimaging AI 

Applications 

Scikit-learn is a widely used, general-purpose machine 

learn- ing library in Python, offering efficient 

implementations of a variety of machine learning algorithms. 

Due to its intuitive API and extensive documentation, scikit-

learn is highly accessible to researchers in neuroscience 

who may not have extensive expertise in artificial 

intelligence. Some key advantages of scikit-learn include: 

 
 

 

 Extbfversatility:  

The library supports a broad range of su- pervised and 
unsupervised learning techniques, including regression, 

classification, clustering, and dimensionality reduction. 

 

 Extbfinteroperability:  

As part of the broader Python scien- tific ecosystem, 

scikit-learn integrates well with libraries like NumPy, SciPy, 

and Pandas. 

 

 Extbfease of Use:  

Unlike deep learning frameworks that often require 

extensive tuning, scikit-learn is designed for rapid 
prototyping, making it suitable for exploratory analysis in 

neuroimaging. 

 

 Extbfmodular Structure:  

The library’s design allows users to build custom 

machine learning pipelines, optimiz- ing preprocessing and 

model selection for specific neu- roimaging tasks. 

 

Although other machine learning frameworks, such as 

Ten- sorFlow and PyTorch, offer deep learning capabilities, 

they often require more computational resources and 

complex tun- ing. Furthermore, alternative AI packages like 
Weka [3] and PyMVPA [4] cater to specific niches but may 

not offer the same level of flexibility and accessibility as 

scikit-learn. 

 

C. Core Concepts in Scikit-learn 

In scikit-learn, data is structured as 2D arrays 

(matrices), where rows represent individual samples and 

columns rep- resent features. This uniform structure 

allows for flexibility in applying various algorithms to 

neuroimaging datasets. The primary components of scikit-

learn are: 
 

 Estimators:  

These objects implement the fit method, allowing 

models to learn from data. Examples include classifiers 

(e.g., Support Vector Machines) and regressors (e.g., Ridge 

Regression). 

 

 Predictors:  

A subset of estimators that implement the predict 

method, enabling them to make predictions on new data. 

Classification and regression models fall into this category. 
 

 Transformers:  

These objects implement the transform method to 

preprocess data, such as standardization (e.g., 

StandardScaler), feature selection, or dimensionality 

reduction (e.g., PCA). If a transformation is invertible, the 

inverse_transform method is also provided. 

 

D. Ensuring Robust Model Evaluation 

A major challenge in neuroimaging machine learning 

is over- fitting, where a model excels on training data but 

performs poorly on new data. Cross-validation is used to 
help prevent this issue: 
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 K-Fold Cross-Validation:  

The dataset is partitioned into k subsets, with each 
subset serving as a validation set while the remaining k − 1 

subsets are used for train- ing. The process is repeated k 

times, and the average performance score provides a robust 

estimate of model generalization. 

 

 Grid Search and Hyperparameter Tuning:  

The GridSearchCV class automates the selection of op- 

timal hyperparameters by evaluating multiple parameter 

combinations using cross-validation. This paper utilizes grid 

search to fine-tune the regularization coefficient in the 

classification of neuroimaging data (see Section V). 
 

Through the modular approach of scikit-learn, 

researchers can systematically preprocess neuroimaging 

data, apply various learning techniques, and rigorously 

evaluate model perfor- mance. The following sections delve 

into specific applications of these methods in neuroimaging 

analysis. 

 

III. DATA READINESS: FROM X-RAY 

VOLUMES TO AN INFORMATION 

MATRIX 
 

Prior to applying measurable learning strategies to 

neuroimag- ing information, it is fundamental to perform 

standard prepro- cessing steps. For utilitarian attractive 

reverberation imaging (fMRI), regular preprocessing steps 
incorporate movement revision, cut timing remedy, co-

enlistment with a physical picture, and standardization to a 

standard layout, like the Montreal Neurological Foundation 

(MNI) space. Normal pro- gramming bundles utilized for 

these errands are SPM [5] and FSL, with a Python 

interface accessible through the nipype library [6]. In this 

segment,The process of shaping preprocessed neuroimaging 

data into a format suitable for input into scikit-learn is 

outlined. The primary goal is to create a data matrix, denoted 

as X, and optionally, a target variable y for prediction. 

 
A. Spatial Resampling 

Neuroimaging information are regularly put away in 

NIfTI de- sign as four-layered information (3D spatial 

aspects with time series for each voxel). These information 

likewise incorporate a relative change framework, which 

relates voxel records to world directions. While working 

with different subjects, the information for every individual 

is enlisted to a typical layout (e.g., MNI or Talairach), 

adjusting them to a common relative change during 

preprocessing. 

 

The relative grid can catch anisotropy in the 
information, where the distance between two voxels may 

differ depending upon the course. This spatial data is 

significant for calcula- tions that use the spatial design of the 

information, like the searchlight examination method. 

 

To perform picture resampling and change the 

spatial goal of the information, the 

scipy.ndimage.affine_transform capability can be used. 

Resampling includes an introduction, which might adjust 

the information, and, subsequently, ought to be done 

carefully. Downsampling is a typical procedure to diminish 
the information size for handling, with normal goals being 

2mm or 3mm. Be that as it may, headways in MR material 

science are prompting higher spatial goal checks. The 

relative grid can likewise encode scaling factors for each 

aspect. 

 

B. Signal Cleaning 

Neuroimaging data are inherently noisy due to the 

complex and indirect nature of data acquisition. A low 

signal-to-noise ratio (SNR) can obscure meaningful brain 

activity, thereby hindering subsequent analysis. To address 
this, several prepro- cessing steps are employed to clean the 

signal by removing trends and artifacts. The key steps in 

signal cleaning include: 

 

Detrending: Detrending involves the removal of sys- 

tematic linear (or polynomial) trends from the time 

series of each voxel. Since the absolute intensity of a 

voxel is less informative than its temporal variation, 

detrending helps isolate the relevant fluctuations in brain 

activity. In prac- tice, detrending is commonly 

implemented using SciPy’s scipy.signal.detrend function, 

which subtracts the best-fit line from the data. This step is 
crucial to eliminate scanner drifts and other slow 

fluctuations that could bias subsequent analyses. 

 

Normalization: Normalization scales the time series 

data such that the variance of each voxel is standardized, 

typi- cally to 1. This process is essential because many 

machine learning algorithms assume that all features 

contribute equally; unnormalized data can lead to certain 

voxels dominating the analysis due to their larger 

variance. By normalizing the data, each voxel is placed on 

an equal footing, ensuring that the algorithm’s performance 
is not skewed by differences in intensity ranges. 

 

Frequency Filtering: Physiological noise (e.g., heart 

rate, respiration) and scanner-related artifacts often 

introduce un- wanted high-frequency and low-frequency 

signals in the data. Frequency filtering targets these 

components by removing frequencies outside the band of 

interest. Techniques such as the Fourier Transform (via 

scipy.fftpack.fft) and Butterworth filters (using 

scipy.signal.butter) can be applied to selectively retain the 

frequency components that are most likely to reflect neural 
activity, while discarding the rest. 

 

C. Transformation from 4D Images to a 2D Array: 

Masking 

Neuroimaging datasets are typically acquired as 4D 

images, with three spatial dimensions and one temporal (or 

trial-based) dimension. However, most machine learning 

algorithms, such as those in scikit-learn, require data to be 

organized in a 2D matrix format, where each row represents 

a sample and each column a feature. 

 

  Brain Masking:  
To convert 4D images into a 2D matrix while retaining 

only the informative regions, a brain mask is applied. A 
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brain mask is a binary image that identifies voxels within 

the brain, effectively excluding areas that contain only noise 
or non-brain tissue. This masking process reduces the 

dimensionality of the data by focusing the analysis on 

voxels that are expected to contain relevant signal. 

 

 
Fig 1 Conversion of Brain Scans into a 2D Data Matrix. Uninformative Voxels are Removed using a Brain Mask. 

 

Applying the Mask: After the brain mask is generated 

or provided, it is applied to the functional data using 

NumPy’s advanced indexing with boolean arrays. The 

resulting 2D matrix, conventionally denoted as X, contains 

only the time series data of the voxels within the mask. The 

following code snippets illustrate this process: 

 
Listing 1: Loading Mask and Functional Data import 

nibabel as nib import numpy as np # Load the brain mask 

and functional (fMRI) data mask = 

nib.load(’mask.nii’).get_fdata() func_data = 

nib.load(’epi.nii’).get_fdata() # Convert the mask to a 

boolean array mask = mask.astype(bool) Once the data are 

loaded, the mask is applied to extract the relevant voxel time 

series: 

 

Listing 2: Applying Mask and Extracting Data # Apply 

the brain mask: each row corresponds to a time point, each 

column to a voxel X = func_data[mask].T # Optionally, 
restore the data structure by mapping the masked data back 

to the original volume unmasked_data = 

np.zeros_like(func_data) unmasked_data[mask] = X.T 

 

D. Data Visualization 

Visualization plays a critical role in neuroimaging by 

pro- viding intuitive insights into both anatomical and 

functional aspects of the brain. Commonly, Regions of 

Interest (ROIs) are visualized on axial slices, with activation 

maps overlaid on an anatomical background. 

 
E. Activation Map Overlay 

An activation map highlights regions of the brain that 

exhibit significant activity changes. To visualize such maps: 

 

 

 An anatomical (structural) image is loaded to serve as a 

background. 

 An activation map is generated, either from statistical 

tests or by thresholding. 

 The activation map is overlaid on the anatomical image 

to identify areas of significant activation 

 
The code below demonstrates how to overlay an 

activation map onto an anatomical slice using Matplotlib. In 

this exam- ple, a synthetic activation map is created by 

thresholding the anatomical image to isolate high-intensity 

voxels. 

 

Listing 3: Visualization of the Activation Map import 

matplotlib.pyplot as plt import numpy as np import nibabel 

as nib # Load the anatomical background image bg_img = 

nib.load(’bg.nii.gz’) bg = bg_img.get_fdata() # Create a 

synthetic activation map by thresholding values above 6000 

activation_map = bg.copy() activation_map[activation_map 
< 6000] = 0 # Display the anatomical background on a 

selected axial slice plt.imshow(bg[..., 10].T, origin=’lower’, 

cmap=’gray ’) # Overlay the activation map using a hot 

colormap for visual contrast masked_activation = 

np.ma.masked_equal( activation_map, 0) 

plt.imshow(masked_activation[..., 10].T, origin=’ lower’, 

interpolation=’nearest’, cmap=’hot’) # Remove axes for a 

cleaner display and render the plot plt.axis(’off’) plt.show() 

 

F. Advanced Visualization Techniques 

Beyond the basic overlay, several enhancements can 
improve visualization: 
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 Anatomical Templates:  

Incorporate standard brain tem- plates to provide 
spatial context. 

 

 Colormap Customization:  

Experiment with different colormaps to maximize 

contrast and readability. 

 

 Interactive Tools:  

Use interactive visualization libraries, such as NiPy’s 

plot_map, for dynamic exploration of activation patterns. 

 

The integration of an anatomical background with 
activation overlays is commonly facilitated by NumPy’s 

masked array functionality (numpy.ma.masked_array), 

which handles zero-valued or non-significant data 

gracefully. Such visualiza- tions are critical for interpreting 

the spatial distribution of brain activity and for identifying 

regions that merit further investigation. 

 

IV. DECODING THE PSYCHOLOGICAL 

PORTRAYAL OF ITEMS IN THE BRAIN 

 

Decoding in neuroimaging refers to the process of 

constructing predictive models that infer cognitive or 
phenotypic states from brain imaging data. This 

framework stands in contrast to encoding, where the goal is 

to predict brain activity from external stimulus descriptors. 

Decoding techniques are pivotal for understanding how 

specific mental representations are instantiated in neural 

activity and have important applications in both basic 

research and clinical contexts. 

 

A seminal demonstration of decoding is provided by 

Haxby et al. [7]. In that study, visual stimuli spanning eight 

distinct categories were presented to six subjects across 12 
sessions, and the objective was to classify the stimulus 

category based on the corresponding fMRI data. This work 

established a benchmark that has since been extended and 

analyzed in numerous studies [8], [9], [10], [4]. For the 

purposes of this paper, the analysis is simplified by focusing 

on data from a single subject and reducing the number of 

stimulus categories to two (faces and houses). 

 

In this context, a target variable y represents the 

stimulus category, thereby formulating the problem as a 

supervised classification task. This is in contrast to 
regression problems where y would assume continuous 

values (e.g., age or reaction times). 

 

A. Classification with Univariate Feature Selection and 

Linear SVM 

The high dimensionality of fMRI data (typically tens 

of thousands of voxels) poses significant challenges due to 

the curse of dimensionality, especially when the number of 

sam- ples (time points) is limited. To address this, a two-

step approach is employed: univariate feature selection 

followed by classification using a linear Support Vector 

Machine (SVM). 
 

 

  Feature Selection::  

Each voxel is evaluated independently using statistical 
tests (such as an F-test) to determine its discriminative 

power. By retaining only the top-ranking vox- els, the 

dimensionality of the data is reduced, which helps mitigate 

overfitting and enhances the classifier’s performance. 

 

Formally, if the full set of features is denoted by F, a 

subset 

 

Fselected ⊂ F is chosen such that 

 

Fselected = {fi ∈ F : p(fi) < α}, 

 

where p(fi) is the p-value corresponding to voxel fi 

and α is a predefined significance threshold. 

 

  Linear SVM::  

Once the feature space has been reduced, a linear SVM 

is applied. The SVM seeks to identify an optimal hyperplane 

that separates the two classes. Its decision function is given 

by 

 
f (x) = wT x + b, 

 

Where w is the weight vector, x is the feature vector 

(repre- senting the selected voxel time series), and b is the 

bias term. The linear SVM is particularly effective in high-

dimensional spaces and tends to yield robust classification 

performance even with relatively few training samples. 

 

A. Searchlight Analysis 

Searchlight analysis is a spatially localized decoding 

technique that provides a fine-grained map of informational 

content across the brain. In this method, a small 
spherical region (the searchlight) is defined around each 

voxel. Within each searchlight, a classifier (typically an 

SVM) is trained using only the data confined to that region. 

The cross-validated prediction accuracy of the classifier is 

then assigned to the central voxel of the searchlight. 

 

This approach allows for the detailed mapping of 

regions where local patterns of activity contain 

discriminative infor- mation about the stimulus. However, 

because the analysis requires training a classifier for each 

voxel (or overlapping set of voxels), it is computationally 
intensive. Nevertheless, the spatial specificity provided by 

searchlight analysis makes it a valuable tool for 

understanding the localized contributions of different brain 

regions to cognitive processes. 

 

B. Results 

The decoding analysis reveals that voxels with the 

highest classifier weights are predominantly located in brain 

regions known to be involved in processing the stimuli—for 

example, regions responsive to faces or houses. While the 

global SVM classifier provides an overall ranking of brain 
regions based on their discriminative power, the searchlight 

analysis yields a spatial map that details the local decoding 

performance. 
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The implementation of this decoding model is 

encapsulated in the script haxby_decoding.py, which is 
publicly avail- able on GitHub. This script encompasses all 

stages of the analysis, from data preprocessing and feature 

selection to classifier training and visualization of results. 

One of the key strengths of the scikit-learn toolkit is its 

modular design; for instance, the linear SVM classifier can 

be easily replaced with alternative models, such as 

ElasticNet or Logistic Regression, by modifying only a 

single line of code. Similarly, non-linear classifiers such as 

Gaussian Naive Bayes can be substituted with minimal 

changes (e.g., replacing the attribute coef_ with theta_). 

 
Overall, the decoding methods presented here 

demonstrate how predictive models can elucidate the 

relationship between brain activity and cognitive states, 

providing insights that may drive further advances in 

neuroimaging research. 

 

V. ENCODING CEREBRUM ACTION AND 

DECIPHERING VISUAL STIMULI 

 

Previous studies have shown that brain activity in the 

visual cortex can predict the type of visual stimulus shown 

to a subject [7]. In this section, we extend this work by 
linking the presented visual stimulus directly to the 

corresponding FMRI activity. We use a set of 10 × 10 binary 

images. In the original study, random binary images were 

used for training, 

 

while structured images (e.g., shapes and letters) were 

used for testing. For simplicity, our work focuses only on 

the training set, and cross-validation is used to obtain 

reliable performance metrics on new data. 

 

Relationship between visual stimulus pixels and brain 
voxels is examined using two complementary frameworks: 

 

 Decoding: Reconstructing the visual stimulus from 

recorded brain activity. 

 Encoding: Predicting fMRI activity from visual stimulus 

descriptors. 

 

 Decoding Visual Stimuli from Brain Activity 

In the decoding framework, the objective is to 

reconstruct the binary visual stimulus that was presented to 

the subject based on the corresponding brain activity. Given 
the binary nature of the stimuli, the problem is formulated 

as a classification task. However, while binary classification 

is well suited for discrete stimuli, it may not directly extend 

to cases involving continuous stimuli such as grayscale 

images. 

 

In this study, I compare several models to evaluate 

their performance in reconstructing the stimulus: 

 

 An ℓ2-regularized Support Vector Machine (SVM), as 

previously applied in similar experiments. 

 A logistic regression model, which provides a proba- 
bilistic interpretation of the classification decision. 

 An ℓ1-regularized SVM, which promotes sparsity in the 

model parameters by utilizing a squared hinge loss. 

 
Feature selection plays a critical role in the decoding 

pipeline due to the high dimensionality of fMRI data. 

Typically, a brain mask is applied to reduce the feature 

space to a subset of ap- proximately 40,000 voxels over 

1,400 time points (samples). In such a high-dimensional 

setting, univariate feature selection is essential to mitigate 

the curse of dimensionality. Specifically, a statistical test 

(e.g., an F-test) is applied to each voxel to determine its 

discriminative power, and only the top features are retained 

for classification. 

 
The following Python code snippet illustrates a 

pipeline that first performs univariate feature selection and 

then applies logistic regression with an ℓ1 penalty to 

encourage sparsity: 

 

Listing 4: Pipeline with Logistic Regression 

pipeline_LR = Pipeline([ (’feature_selection’, 

SelectKBest(f_classif, 500)), (’classifier’, 

LogisticRegression(penalty=’l1’, C=0.05)) ]) 

 

This pipeline first selects the top 500 features based 

on the F-test statistic and then trains a logistic regression 
classifier on the reduced feature set. The use of an ℓ1 

penalty helps in identifying the most relevant voxels by 

driving the coefficients of less informative features towards 

zero. 

 

 Encoding fMRI Data from Stimulus Descriptors 

In contrast to decoding, the encoding framework aims 

to pre- dict the fMRI response given the visual stimulus 

descriptors. This approach quantifies the extent to which the 

stimulus can explain the variability in each voxel’s signal. A 

common metric for evaluating encoding models is the 
predictive r2 score, which measures the proportion of 

variance in the fMRI signal that is captured by the model 

relative to a baseline constant model. 

 

For the encoding task, ridge regression is employed. 

Ridge regression, which applies an ℓ2 penalty, is well-suited 

for handling multicollinearity and stabilizing estimates in 

high- dimensional spaces. The model is trained using cross- 

validation to ensure that the performance metric is robust 

against overfitting. The following Python code snippet 

demon- strates the evaluation process via cross-validation: 
 

Listing 5: Ridge Regression Evaluation for Encoding # 

For each voxel, compute the predictive rˆ2 score using 

cross-validation scores = [] for train, test in cv: # Fit the 

ridge regression model on training data 

model.fit(X_train[train], y_train[train]) # Predict on test data 

pred = model.predict(X_train[test]) # Compute the rˆ2 score 

for the current voxel score = 1.0 - np.sum((y_train[test] - 

pred)**2) / \ np.sum((y_train[test] - np.mean(y_train[ 

test]))**2) scores.append(score) mean_scores = 

np.mean(scores, axis=0) 
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Alternative regression methods, such as Lasso 

regression, can be used if a sparser solution is desired. 
However, Lasso may introduce additional computational 

complexity due to the need for tuning the regularization 

parameter. 

 

  Receptive Fields and Sparse Regression:  

Due to the retino- topic organization of early visual 

areas, only a small subset of stimulus pixels is typically 

responsible for driving the activity in each voxel of the 

primary visual cortex. Neighboring voxels are expected to be 

influenced by adjacent regions of the stimulus. To identify 

these localized relationships, sparse linear regression 
techniques are employed. One effective method is the 

LassoLarsCV estimator, which utilizes the Least Angle 

Regression (LARS) algorithm combined with cross-

validation to select a sparse set of stimulus features that 

best explain the voxel responses. This approach effectively 

reveals the receptive fields of neurons in the visual cortex. 

 

 

 Results 

Figure 2 summarizes the results from both the 
decoding and encoding analyses. In the decoding 

experiment, Figures 2(a) and (c) display classifier weight 

maps obtained from logistic regression and SVM, 

respectively, focusing on voxels in V1 and adjacent 

retinotopic areas. Figures 2(b) and (d) present the 

reconstruction accuracy per pixel for the respective models. 

The results indicate that both classifiers yield similar per- 

formance, with notably higher reconstruction accuracy in 

the foveal region, likely due to its denser neuronal 

population. 

 
In the encoding experiment, Figure 2(e) illustrates the 

recep- tive fields corresponding to voxels with the highest 

predictive scores, while Figure 2(f) shows reconstruction 

accuracy as a function of stimulus pixel position. The 

convergence of results from both encoding and decoding 

analyses underscores a consistent relationship between 

specific stimulus pixels and brain voxel responses, thereby 

reinforcing the validity of the methodologies. 

 

 
Fig 2 Miyawaki Results. Top (Decoding): (a)/(c) Classifier Weights from Logistic Regression/SVM; (b)/(d) Reconstruction 

Accuracy per Pixel. Bottom (Encoding): (e) Receptive fields and (f) Reconstruction Accuracy by Stimulus pixel. 

 

The implementation of these models is encapsulated in 

the script haxby_decoding.py, which is available on GitHub. 

This script integrates all stages—from data preprocessing 

and feature selection to classifier training and visualiza- 

tion—demonstrating the versatility and modularity of the 

scikit-learn toolkit. Owing to this modular design, switching 

between different classifiers (e.g., from SVM to 

ElasticNet or Logistic Regression) requires minimal 
modifications to the code, thereby facilitating rapid 

experimentation and model optimization. 

 

Overall, the integrated decoding and encoding 

analyses not only demonstrate the feasibility of predicting 

both visual stimuli and fMRI responses but also provide 

critical insights into the spatial and functional organization of 

the visual cortex. Such insights can pave the way for future 

applications in cognitive neuroscience and brain-computer 

interfacing. 

 

VI. RESTING-STATE AND PRACTICAL 

AVAILABILITY ANALYSIS 
 

Indeed, even without outside conduct or clinical 

factors, in- vestigating the construction of mind cues can 

give critical experiences. Truth be told, [11] showed that 

cerebrum en- actment displays intelligible spatial examples 
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during resting states. These associated voxel actuations 

structure practical organizations that line up with notable 
undertaking related networks. 

 

Biomarkers found through prescient demonstrating of 

resting- state fMRI could be especially valuable in situations 

where subjects can’t perform explicit undertakings. In this 

review,A dataset comprising resting-state fMRI data from 

both control subjects and ADHD (Attention Deficit 

Hyperactivity Disor- der) patients is examined. These 

subjects were studied with minimal specific tasks to capture 

their brain activity at rest. 

 
Resting-state fMRI data is considered unlabeled, as 

brain activity cannot be directly associated with a particular 

outcome variable. This type of problem is classified as 

unsupervised learning in machine learning. To extract 

meaningful networks or regions, techniques that group 

similar voxels based on their time series are employed. 

A widely used technique in neuroimaging for this purpose 

is Independent Component Analysis (ICA), which serves as 

the focus of the first model. Additionally, the use of 

clustering methods to identify nearly homogeneous regions 

will be demonstrated. 

 
A. Independent Part Investigation (ICA) to Concentrate 

Net- works 

ICA is an outwardly hindered source segment 

methodology that hopes to crumble a multivariate sign into 

free parts by growing their non-Gaussianity. A model 

delineation of ICA, where ICA is used to confine covering 

voices from various speakers using beneficiaries put around 

a room. 

 

  ICA in Neuroimaging:  

ICA is seen as the standard system for isolating 
organizations from resting-state fMRI data. A couple of 

systems have been made to combine ICA re- sults across 

various subjects. For example, [12] proposed a 

dimensionality decline approach (using PCA), followed by 

association of time series, which is the strategy 

displayed in this model. Then again, use dimensionality 

decline got together with authorized relationship 
assessment to add up to data from different subjects. The 

FSL suite consolidates Melodic [13], which utilizes an 

association procedure, but it isn’t distinct in this work. 

 

  Application:  

Prior to applying ICA, the information goes through 

preprocessing steps, including focusing and detrend- ing of 

the time series. This guarantees that straight patterns are not 

caught by ICA. The FastICA calculation is then applied to 

the subsequent time series. Utilizing the scikit-learn library, 

ICA is direct to carry out because of the transformer idea. 
The information network is rendered for spatial ICA, where 

voxels are considered as irregular factors and the time 

focuses are treated as fixed. The subsequent parts address 

different sign designs, for example, commotion and resting-

state orga- nizations. For the investigation,The focus is on 

extracting only 10 components, which represent the primary 

signal patterns. 

 

  Results:  

Figure 3 illustrates a comparison between a basic 

concat-ICA approach implemented in this work and more 

advanced multi-subject ICA methods. Although both tech- 
niques were executed using scikit-learn, the detailed imple- 

mentation of CanICA is not provided here. For 

demonstration purposes, the default mode network—a 

prominent resting- state network—is highlighted. Initial 

observations suggest that both CanICA and Melodic’s 

concat-ICA produce results with reduced noise and yield 

comparable outcomes, even though definitive conclusions 

cannot be drawn from a single example. Scikit-learn gives a 

few other framework disintegration strate- gies under the 

’sklearn.decomposition’ module. One option in contrast to 

ICA is word reference realizing, which applies a ℓ1 
regularization to the separated parts. This outcomes in 

sparser and more minimized parts than those got with 

ICA, which commonly address full-mind action and require 

thresholding for significant understanding. 

 

 
Fig 3 Default Mode Network Components Obtained by three Methods: (left) simple Concat-ICA, (Middle) CanICA (Nilearn), 

and (right) Melodic’s Concat-ICA. Data Were nor- Malized for Visualization. 
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B. Learning Practically Homogeneous Locales with 

Cluster- ing 
From an AI viewpoint, bunching strategies bunch tests 

into groups by expanding a comparability measure between 

the examples inside each bunch. When applied to voxels 

from a useful mind picture, this action can be founded on 

utilitarian comparability, bringing about bunches of voxels 

that address practically homogeneous locales. 

 

 Approaches:  

Different grouping approaches exist, each with its own 

assets and impediments. Many require the quan- tity of 

groups to be foreordained, a decision that relies upon the 
application. A bigger number of groups gives a better 

portrayal of the information, saving a greater amount of the 

first sign, yet additionally increments model intricacy. Some 

bunching techniques can integrate spatial data, delivering 

spatially ad- joining groups, otherwise called packages. In 

this segment, Two basic and quick clustering approaches are 

depicted. 

 

 Ward Clustering:  

utilizes a base up various leveled ap- proach where 

voxels are logically gathered into groups. In scikit-learn, 

primary data can be presented through a network chart, 
which compels the converges to just adjoining voxels, 

prompting coterminous packages. 

 

 K-Means Clustering:  

partitions the data into clusters by assigning each voxel 

to the nearest centroid, effectively group- ing similar data 

points. However, because K-Means does not inherently 

enforce spatial coherence, spatial smoothing is often applied 

prior to clustering to improve the meaningfulness of the 

results. 

 
To apply clustering algorithms effectively, the data 

must first be prepared using standard preprocessing steps to 

create an appropriate data matrix. Since both Ward 

clustering and K- Means rely on second-order statistical 

properties, applying PCA for dimensionality reduction while 

preserving these statistics can enhance performance. It is 

important to recognize that clustering methods are designed 

to group samples—in this case, the aim is to cluster 

voxels. Consequently, when the data matrix is organized 

as (time points × voxels), it must be reshaped accordingly 

before being used with scikit- learn’s clustering estimators. 
While scikit-learn offers the WardAgglomeration 

transformer for feature agglomera- tion via Ward 

clustering, a direct equivalent for K-Means is not provided. 

 

  Results:  

The clustering outcomes are presented in Figure 4. 

Although clustering highlights large-scale brain structures, 

such as the calcarine sulcus (see Figure 4a), it does not 

necessarily yield sharply defined anatomical regions. 

Instead, clustering serves as a dimensionality reduction tool 

that groups similar voxels, providing a coarse overview of 

the data struc- ture. K-Means, which does not enforce spatial 
contiguity, may produce numerous small clusters. In 

contrast, Ward clustering, by imposing spatial constraints, 

naturally yields more con- tiguous regions. Being a bottom-

up method, Ward clustering generally performs better when 

a high number of clusters is considered. Although scikit-

learn provides several clustering techniques, selecting the 

optimal one for fMRI time-series analysis necessitates a 

detailed understanding of the specific application. 

 

 
Fig 4 Brain Parcellations Obtained via Clustering. Colors are Assigned Arbitrarily.  
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VII. CONCLUSION 

 
This study demonstrated the use of AI methods on 

fMRI data by leveraging the scikit-learn Python toolkit to 

address key challenges in neuroscience. Our work shows 

that supervised approaches, such as encoding and decoding, 

can effectively link brain images with external information, 

while unsuper- vised methods uncover natural patterns in 

resting-state data. Although the Python implementations are 

straightforward and user-friendly, challenges remain in data 

preprocessing, model selection, and result interpretation. 

Integrating scikit-learn with neuroimaging-specific libraries 

like Nilearn is essential for streamlining these processes. 
 

The techniques presented here are just a small sample 

of the wide range of applications in neuroimaging. By 

combining scikit-learn’s diverse algorithms with customized 

preprocess- ing steps, researchers can reveal new insights—

such as con- nectivity patterns obtained through sparse 

inverse covariance estimation. This seamless integration of 

AI tools and neu- roimaging workflows promises to drive 

further breakthroughs in understanding brain function. 

 

Future efforts should focus on refining these methods 

and exploring additional models and preprocessing 
strategies. The integration of general-purpose AI toolkits 

with domain-specific approaches holds great promise for 

advancing both scientific research and clinical applications. 
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