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Abstract: In order to increase prediction accuracy, deep learning models must be trained by adjusting parameters to 

minimize a loss function. In supervised learning, the mapping between inputs and their right outputs is learned by training 

models using labeled input examples. In order to minimize mistakes, predictions are compared to actual outcomes, and 

optimization methods are used to adjust parameters. Until convergence is reached, these algorithms go through several 

cycles of iteration. Stochastic Gradient Descent (SGD), Momentum SGD, RMSProp, AMSGrad, Adam, Yogi, and Lion are 

the seven optimization techniques that are evaluated in this study based on training accuracy, test accuracy, training loss, 

and sensitivity to learning rate. MNIST and CIFAR-10 were the two benchmark datasets used in the experiments. SGD with 

a learning rate of 0.5 had the best test accuracy of 99.14% and the highest training accuracy of 99.89% on MNIST. With 

test accuracy of 99.15% and 98%, respectively, at a learning rate of 1e-2, Momentum SGD and Adam likewise demonstrated 

strong performance. Optimizers like Yogi and Lion, on the other hand, performed competitively at lower learning rates but 

suffered at higher ones; at 1e-5, Lion's test accuracy was 98.69%. All optimizers displayed comparatively decreased 

accuracies for CIFAR-10, which was indicative of the dataset's increased complexity. Momentum SGD outperformed other 

optimizers including Adam, Yogi, and Lion, achieving the highest training accuracy of 98.90% and the best test accuracy of 

72.94% at a learning rate of 1e-2. Lion showed better performance and stability on both datasets at a low learning rate of 

1e-5. These results highlight how crucial it is to choose learning rates and optimization techniques that are specific to the 

features of each dataset. 
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Science and Research Technology, 10(8), 593-601. https://doi.org/10.38124/ijisrt/25aug007 

 

I. INTRODUCTION 

 

Deep learning models have become increasingly 

popular due to their remarkable performance in areas like 

image classification[1], speech recognition, and natural 

language processing, and they depend significantly on 

optimization techniques to refine model parameters. Because 
of their exceptional performance in domains like speech 

recognition, picture classification, and natural language 

processing, deep learning models have grown in 

popularity[2]. However, in order to fine-tune their 

parameters, these models heavily rely on optimization 

approaches. These models are trained using an optimization 

technique that adjusts parameters to minimize a particular 

loss function, hence increasing the prediction accuracy of the 

model. The goal of optimization is to improve the model's 

performance by reducing the discrepancy between expected 

and actual outcomes. Iteratively, the algorithm gradually 

modifies the parameters in order to arrive at a solution that 

ideally strikes a compromise between generalization and 

accuracy 

 

The model that trained on labeled datasets in supervised 

learning, where each input is associated with a particular 
output. In order to reduce the prediction error, the model 

adjusts its parameters after generating predictions for a 

particular input and comparing them to the actual 

outcomes[3]. By using an optimization technique, the model 

aims to minimize the objective function, sometimes referred 

to as a loss function, which quantifies the difference between 

the expected and actual results[4]. The model's efficacy in 

terms of training time, overall accuracy, and generalizability 

can be significantly impacted by the optimization algorithm 

choice. 
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Numerous algorithms are used in the optimization 

process, and each has certain benefits and drawbacks.  

Because of their simplicity and efficiency, methods like 

Stochastic Gradient Descent (SGD) and its variations are 

well-known and widely used[5].  However, they have 

drawbacks, including as sluggish rates of convergence and 

increased susceptibility to hyperparameters, such the learning 

rate.  To address these issues, more advanced techniques such 
as Momentum, RMSProp, AMSGrad, Adam, Yogi, and Lion 

have been developed, with changes meant to improve training 

speed, stability, and the ability to break out of local 

minima[6].  Even with their extensive use, it is still unclear 

which optimization technique performs best in different 

scenarios, particularly when datasets and model topologies 

vary. 

 

This paper aims to the performance of seven 

optimization algorithms—SGD, Momentum SGD, 

RMSProp, AMSGrad, Adam, Yogi, and Lion—on two 

widely used benchmark datasets—MNIST and CIFAR-10—
this work seeks to close this gap. Important parameters 

including training accuracy, test accuracy, training loss, and 

the impact of learning rate modifications will be the main 

focus of the comparison. By carrying out these tests, the study 

will provide information on the relative benefits and 

drawbacks of every optimizer, which will help determine 

which approaches are most suited for different deep learning 

tasks. 

 

The organization of the paper is as follows: Section II 

presents a review of the existing literature regarding 
optimization algorithms and their roles in machine learning 

and deep learning. This section also emphasizes significant 

research comparing different optimizers and their theoretical 

underpinnings. Section III describes the methodology 

employed in this study, detailing the optimization algorithms 

that were assessed. Section IV covers the experimental design 

and findings. 

 

II. SIGNIFICANCE 

 

The effectiveness of deep learning models is largely 

dependent on the optimization process, and the model's 
training and generalization are greatly influenced by the 

optimization algorithm selection. Because of their 

computational efficiency and ability to minimize the loss 

function, gradient descent-based algorithms are especially 

well-liked. However, there are still problems like delayed 

convergence, hyperparameter sensitivity, and the possibility 

of being stuck in saddle points or local minima. Numerous 

optimization strategies have been proposed to address these 

shortcomings. 

 

Even though conventional techniques like SGD and its 
momentum-enhanced variants offer simple answers, they 

frequently encounter problems when working with complex, 

high-dimensional data sets like pictures or videos, where the 

loss landscape may contain a large number of local minimum 

and saddle points. Because they can change the learning rate 

during training, adaptive optimization techniques like 

RMSProp, Adam, and its variants have proven more effective 

in certain circumstances. This helps to improve stability and 

accelerate convergence. Their efficacy is still dependent on a 

number of variables, including the learning rate and other 

hyperparameters. Furthermore, more modern techniques like 

Yogi and Lion have emerged, promising better training 

stability and convergence rate; nevertheless, their empirical 

efficacy in comparison to existing optimizers has not yet been 

fully explored. 
 

This research intends to methodically evaluate 

optimization algorithms on two popular datasets, MNIST and 

CIFAR-10, in light of the large number of optimization 

algorithms that are now accessible and the absence of a 

definitive answer on which optimizer is best for specific 

tasks. This research aims to offer useful insights to help 

researchers and practitioners choose the best optimization 

method for their deep learning projects by conducting such 

an empirical analysis. 

 

III. SCOPE OF RESEARCH 

 

The evaluation of optimization strategies used in deep 

learning model training for image classification tasks is the 

main focus of this research. The MNIST and CIFAR-10 

datasets were specifically chosen because they are well-

known standards that are frequently used in the literature to 

assess different machine learning models and optimization 

techniques. The results reported in this research are based on 

experiments conducted using these datasets, however the 

knowledge gained may also be applicable to other computer 

vision and related tasks. Metrics including training and test 
accuracy, training loss, and the impact of different learning 

rates are used in the evaluation. 

 

Although other performance metrics, like F1-score or 

inference speed, may potentially be pertinent, they are not 

within the purview of this research, which primarily aims to 

examine algorithm performance in terms of accuracy and 

stability. 

 

IV. LITERATURE REVIEW 

 

In order to increase accuracy and lower the loss function 
during model training in machine learning and deep learning, 

optimization strategies are crucial. These methods were 

developed to address problems like as local minimum, 

sluggish convergence, and the difficulty of choosing a 

learning rate. The optimal algorithm for a given issue has 

been the subject of numerous studies. We review recent 

studies that compare the effectiveness of optimization 

algorithms for various tasks, including their theoretical 

foundations, actual findings, and relative effectiveness. 

 

Gradient Descent (GD) and its variants form the 
foundation for most modern optimization algorithms. The 

primary approaches include Batch Gradient Descent (BGD), 

Stochastic Gradient Descent (SGD), and Mini-batch GD, 

each differing in how they use training samples to compute 

gradients. BGD computes gradients using the entire dataset, 

making it computationally expensive for large datasets[6]. 

SGD updates parameters for each individual sample, which 
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leads to faster convergence but introduces noise. Mini-batch 

GD strikes a balance between the stability of BGD and the 

efficiency of SGD[7]. 

 

SGD is particularly efficient in learning over-

parameterized neural networks by converging to global 

minima that generalize well. However, it faces challenges 

with learning rate selection and sensitivity to initialization[6]. 
To address these limitations, momentum-based approaches 

were introduced. Momentum SGD accelerates convergence 

by accumulating a velocity vector in the direction of 

consistent gradient descent, which effectively dampens 

oscillations in narrow valleys of the loss landscape[6]. 

 

Adaptive methods dynamically adjust learning rates for 

each parameter, offering improvements over fixed learning 

rate approaches. The Adagrad method, for example, scales 

learning rates inversely proportional to the square root of 

accumulated squared gradients. While effective for sparse 

data, Adagrad suffers from rapidly diminishing learning rates 
in dense gradient scenarios. 

 

RMSProp was developed to address Adagrad’s learning 

rate decay issue by using exponential moving averages of 

squared gradients, ensuring a more consistent learning rate. It 

has demonstrated improved performance in non-convex 

optimization problems, which are common in deep learning. 

 

Momentum and adaptive integrated methods have led to 

significant advancements. Adam, for example, combines the 

benefits of RMSProp with momentum by using both first and 
second moment estimates of gradients. Theoretical analysis, 

however, revealed potential issues that affect its practical 

implementation. This led to the development of AMSGrad, 

which modifies Adam by using long-term memory of past 

gradients to ensure better convergence. 

 

Zaheer et al. propose Yogi as a solution to Adam's issues 

with learning rate decay, which can cause divergence in non-

convex settings. Yogi controls the effective learning rate and 

ensures convergence, showing improvements in 

generalization when the mini-batch size increases. 

 
Several studies have compared optimization algorithms 

based on various tasks. Mustapha et al. evaluated nine 

optimizers, including stochastic, momentum, Nesterov, 

AdaGrad, AdaDelta, RMSProp, Adam, AdaMax, and 

Nadam, using ophthalmology data. Their findings showed 

that AdaGrad achieved the best mean absolute error (0.3858) 

in just 53 iterations, while AdaDelta performed the worst 

(0.6035 in 6000 iterations). This evaluation aimed to identify 

the most effective optimizer for keratoconus detection[8]. 

 

Zaheer and Shaziya compared six optimizers on four 
image datasets, showing that Adam achieved the highest 

testing accuracy (0.9826 on MNIST and 0.9855 on CIFAR-

10), while RMSProp excelled in training accuracy. Their 

paper also explored the performance of SGD, providing 

experimental evidence of its satisfactory results in over-

parameterized networks[9]. 

 

Another algorithm derived through symbolic discovery 

that emphasizes sign-based updates combined with 

momentum. Lion has shown competitive performance in 

deep learning tasks, especially in low learning rate scenarios, 

where it demonstrates stable convergence behavior[10]. In 

this paper experimentally evaluates Lion’s stability and 

efficiency in comparison to six optimizers, particularly under 

different fixed learning rate regimes. We find that Lion 
performs exceptionally well at low learning rates, supporting 

the growing evidence that it strikes a balance between 

simplicity, convergence speed, and robustness. This makes it 

a promising alternative in diverse optimization landscapes. 

 

V. METHODOLOGY 

 

A. Experimental Setup 

This research  aims to compare the performance of 

seven deep learning optimization algorithms—Stochastic 

Gradient Descent (SGD), Momentum SGD, RMSProp, 

AMSGrad, Adam, Yogi, and Lion—using two widely used 
benchmark datasets: MNIST and CIFAR-10. The 

performance of each optimizer is evaluated based on key 

metrics such as training accuracy, test accuracy, training loss, 

and the impact of learning rate. The experiments were carried 

out using Python and TensorFlow, leveraging the power of 

GPU acceleration for model training. 

 

B. Datasets 

 

 MNIST: 

The MNIST (Modified National Institute of Standards 
and Technology) dataset is a large collection of handwritten 

digits. It contains 60,000 training images and 10,000 testing 

images, each 28x28 pixels, in grayscale. This dataset is 

commonly used for image classification tasks and is widely 

considered a standard benchmark for evaluating machine 

learning algorithms. Due to its relatively simple nature, 

MNIST serves as a suitable dataset for comparing basic 

optimization techniques in deep learning. 

 

 CIFAR-10: 

The CIFAR-10 dataset consists of 60,000 32x32 color 

images in 10 classes, with 6,000 images per class. The dataset 
is split into 50,000 training images and 10,000 testing images. 

CIFAR-10 is considered a more challenging dataset than 

MNIST due to the higher complexity of the images and the 

greater diversity of classes. It is often used for evaluating 

deep learning models' performance in tasks such as image 

classification and object recognition. 

 

Both datasets are preprocessed before training, with 

pixel values normalized to the range [0, 1] to help the 

optimization algorithms converge more efficiently. 

 
C. Neural Network Architecture 

For both datasets, a simple convolutional neural 

network (CNN) architecture was used for training. The 

architecture consists of the following layers: 
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 Input layer: The input layer receives the image data 

(28x28 pixels for MNIST and 32x32 pixels for CIFAR-

10). 

 Convolutional layers: These layers apply convolutional 

filters to extract features from the input images. Each 

convolutional layer is followed by a ReLU activation 

function to introduce non-linearity and improve learning 

capacity. 

 Max-pooling layers: Max-pooling layers reduce the 

spatial dimensions of the feature maps, helping to 

decrease the number of parameters and computational 

load. 

 Fully connected layers: These layers perform high-level 

reasoning by connecting all features learned by the 

convolutional layers. A softmax activation is used in the 

output layer to classify the images into one of the 10 

classes. 

 

The network is trained using cross-entropy loss for 
classification tasks, and the categorical accuracy metric is 

used to evaluate performance. 

 

D. Optimization Algorithms 

The following optimization algorithms were evaluated 

in this study: 

 

 Stochastic Gradient Descent (SGD): 

A classic optimization algorithm that updates the 

model's parameters using the gradient of the loss function 

computed from a single training sample. This algorithm is 

computationally efficient but can exhibit noisy updates and 
may struggle with convergence in complex datasets. 

 

 Momentum SGD: 

Momentum-based SGD modifies the basic SGD by 

introducing a term that accelerates the updates in the direction 

of the gradient, helping the algorithm escape local minima 

and speeding up convergence. 

 

 RMSProp: 

RMSProp adjusts the learning rate for each parameter 

by considering the average of recent gradients, allowing for 
adaptive learning rates. This helps stabilize the training 

process by adapting to the scale of the gradients, especially 

for noisy datasets. 

 

 AMSGrad: 

AMSGrad is a modification of RMSProp designed to 

ensure that the learning rate does not increase during training. 

It addresses issues in RMSProp related to the variability of 

the learning rate, offering more stable convergence. 

 

 Adam: 

The Adam optimizer is an adaptive method that 
combines the advantages of both RMSProp and Momentum. 

It computes adaptive learning rates for each parameter by 

using both the first-order (momentum) and second-order 

(RMS) moment estimates of the gradients. Adam is widely 

used in deep learning for its robustness and efficient handling 

of sparse gradients. 

 

 Yogi: 

Yogi is a recent variant of Adam that addresses the 

problem of excessively large updates in the Adam optimizer. 

It modifies the second moment estimate by introducing a 

mechanism to avoid large, unstable steps during training, thus 

improving stability. 

 

 Lion: 
Lion is a novel optimizer that emphasizes robust and 

stable convergence, particularly at low learning rates. It 

combines the benefits of momentum with adaptive learning 

rates to offer better stability in optimization, especially in 

complex or noisy loss landscapes. 

 

Each of these optimizers is tested with different learning 

rates to evaluate their sensitivity and performance in training 

deep learning models. 

 

E. Hyperparameter Settings 

The training process involves tuning several 
hyperparameters to optimize performance. The following 

hyperparameters were used across all experiments: 

 

 Batch Size: 128 

 Epochs: 15 

 

 Learning Rates:  

For each optimizer, multiple learning rates were tested, 

including values such as 0.5, 1e-2, 1e-3, and 1e-5, to evaluate 

the impact of learning rate on model performance. 

 

 Optimizer-Specific Parameters:  

For each optimizer (e.g., Momentum for Momentum 

SGD, β1 and β2 for Adam and AMSGrad), default values 

were used as specified in the respective literature (e.g., β1 = 

0.9, β2 = 0.999 for Adam). 

 

The models were trained and evaluated under these 

settings for both MNIST and CIFAR-10 datasets. 

 

F. Evaluation Metrics 

The following evaluation metrics were used to assess 
the performance of each optimizer: 

 

 Training Accuracy: The accuracy of the model on the 

training set after each epoch. 

 Test Accuracy: The accuracy of the model on the test set 

after training completion. 

 Training Loss: The loss value computed on the training 

set during the training process. 

 Convergence Speed: The number of epochs required to 

reach a certain level of accuracy or loss, providing insight 

into the efficiency of each optimization method. 
 

G. Experimental Procedure 

The experiments were conducted as follows: 

 

 The neural network models were initialized with random 

weights using a Xavier initialization to ensure that the 

starting point of training does not adversely affect the 

optimization process. 
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 Each optimization algorithm was trained separately on the 

MNIST and CIFAR-10 datasets, with the training process 

monitored at regular intervals to track the loss and 

accuracy. 

 

 The performance of each algorithm was evaluated based 

on the final test accuracy and the stability of the training 

process, focusing on how the learning rate influenced 
each optimizer's performance. 

 

 The results were compared to determine which optimizer 

provided the best balance between training speed, 

accuracy, and stability. 

 

H. Statistical Analysis 

To ensure the robustness of the results, each experiment 

was repeated three times with different random 

initializations. The mean and standard deviation of the 

performance metrics (training accuracy, test accuracy, and 

training loss) were computed across these repetitions to 
account for the inherent randomness in the training process. 

Statistical significance was assessed using a t-test to compare 

the performance of the optimizers under different learning 

rate settings. 

 

VI. EXPERIMENTAL RESULT AND ANALYSIS 

 

As shown in table 1, To evaluate the performance of 

various optimization algorithms on handwritten digit 

classification, we conducted a series of experiments using the 

MNIST dataset. The study compared the training and testing 

accuracies of eight widely used optimizers—SGD, 

Momentum (MOMEN), TUMSGD, RMSPROP, 
AMSGRAD, ADAM, YOGI, and LION—across three 

different learning rates: 0.5, 1e-2, and 1e-5. The results 

revealed that, at a high learning rate of 0.5, the traditional 

SGD optimizer achieved the highest test accuracy (0.9914), 

closely followed by MOMEN and TUMSGD. However, with 

a moderate learning rate of 1e-2, adaptive optimizers such as 

ADAM and RMSPROP showed improved generalization, 

with ADAM reaching a test accuracy of 0.9876. Interestingly, 

at the lowest learning rate (1e-5), all optimizers performed 

exceptionally well in both training and testing, with LION 

slightly outperforming others by achieving a test accuracy of 

0.9869. These findings suggest that while traditional 
optimizers are effective with larger learning rates, adaptive 

methods like ADAM and LION demonstrate stable and 

consistent performance across varying learning rates. This 

underscores the importance of selecting appropriate 

optimization techniques and learning rates to enhance model 

accuracy and generalization. 

 

Table 1 Comparosion of Optimizers on MNIST Dataset(Training vs. Test Accuracy ) 

 
 

As shown in figure 1, the visualizations of training 

accuracy and training loss across epochs for the MNIST 
dataset offer further insight into the optimization behavior 

under different learning rates. At a high learning rate of 0.5, 

as shown in the top plots, optimizers like Momentum, 

TUMSGD, and LION exhibit a rapid increase in training 

accuracy, achieving near-perfect values within the first few 

epochs, while others such as SGD and RMSPROP converge 

more slowly or exhibit unstable behavior. The corresponding 

loss curves support this, showing a sharp initial drop in loss 
for adaptive optimizers, whereas SGD suffers from high loss 

values and slower convergence. At a more moderate learning 

rate of 1e-2, the training accuracy curves indicate stable 

learning for most optimizers, with TUMSGD, ADAM, and 

YOGI showing smooth and consistent accuracy growth. 

However, the training loss plot reveals a significant instability 
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in LION, as evidenced by sharp spikes, suggesting sensitivity 

to this particular learning rate. These trends highlight the 

importance of learning rate tuning per optimizer. Specifically, 

adaptive methods such as Momentum and TUMSGD provide 

both faster convergence and greater training stability across 

learning rates, while some optimizers (e.g., LION) exhibit 

volatility that may impair performance despite high final 

accuracy. 

 

 
 

 
 

 
Fig 1 a, b, c, d, e, f: Show the Different Epoch for the Result 
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Table 2 Comparison of Optimizers on CIFAR-10 (Training and Testing Accuracy) 

 
 

As shown in table 2, To further assess the 
generalizability and robustness of different optimization 

algorithms, a comparative experiment was conducted using 

the CIFAR-10 dataset. The analysis evaluated eight 

optimizers—SGD, Momentum (MOMEN), TUMSGD, 

RMSPROP, AMSGRAD, ADAM, YOGI, and LION—

across three learning rates (0.5, 1e-2, and 1e-5), measuring 

both training and testing accuracy. At a high learning rate of 

0.5, adaptive methods such as ADAM, MOMEN, TUMSGD, 

and LION achieved perfect training and testing accuracy 

(1.0000), while SGD and RMSPROP performed poorly on 

the test set, with test accuracies of only 0.6382 and 0.6301 
respectively, indicating potential overfitting or instability. 

When the learning rate was decreased to 1e-2, MOMEN and 

TUMSGD remained robust, attaining test accuracies of 
0.7161 and 0.6470 respectively, while other optimizers such 

as AMSGRAD and ADAM suffered a notable performance 

drop. At the smallest learning rate (1e-5), LION 

outperformed all others in generalization with a test accuracy 

of 0.6264, followed by MOMEN and TUMSGD. Overall, the 

results suggest that while some optimizers overfit or fail to 

generalize at high learning rates, adaptive methods such as 

LION and TUMSGD demonstrate better stability and 

adaptability across different settings. These findings 

highlight the significance of choosing both an appropriate 

optimizer and learning rate for achieving reliable 
performance on more complex datasets like CIFAR-10. 
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Fig 2 a, b, c, d, e, f: Comparison of Optimizer Performance on CIFAR-10 Across Varying Learning Rates 

 

As shown in figure 2, In this experiment, various 

optimization algorithms were evaluated on the CIFAR-10 

dataset to assess their performance under different learning 

rates. The results demonstrate that the choice of optimizer and 

learning rate significantly influences the training dynamics. 
At a higher learning rate (0.5), optimizers such as Adam, 

RMSprop, and Momentum SGD exhibited rapid 

convergence, achieving higher training accuracy in fewer 

epochs. However, excessive learning rates occasionally led to 

unstable training or suboptimal convergence in certain 

optimizers. At a moderate learning rate (1e-2), most 

optimizers showed consistent and steady improvements in 

accuracy while maintaining relatively low loss values. 

Conversely, with a very low learning rate (1e-5), training 

progressed slowly across all optimizers, indicating 

underfitting and insufficient learning updates. Overall, 

adaptive optimizers like Adam and Yogi consistently 
outperformed traditional methods such as plain SGD, 

especially in terms of convergence speed and final accuracy. 

These findings highlight the importance of selecting an 

appropriate optimizer and tuning the learning rate to balance 

convergence efficiency and model performance. 

 

VII. CONCLUSION AND FUTURE WORK 

 

This paper presents a comprehensive comparison of 

seven popular optimization algorithms—Stochastic Gradient 

Descent (SGD), Momentum SGD, RMSProp, AMSGrad, 

Adam, Yogi, and Lion—focusing on their performance 

across two benchmark datasets, MNIST and CIFAR-10. The 

evaluation was based on key metrics such as training 

accuracy, test accuracy, training loss, and the impact of 

learning rate variations. The findings highlight the diverse 

strengths and weaknesses of each optimization method, 

underscoring the critical role that both the choice of algorithm 
and the learning rate play in determining model performance. 
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From the experiments, it was observed that SGD with a 

learning rate of 0.5 achieved the highest training accuracy on 

MNIST (0.9989), while Momentum SGD showed excellent 

performance on both MNIST and CIFAR-10, with the highest 

training accuracy on CIFAR-10 (98.90%) and the best test 

accuracy (72.94%). On the CIFAR-10 dataset, other 

optimizers like Adam, Yogi, and Lion showed moderate 

performance compared to Momentum SGD. However, Lion 
demonstrated superior stability at a lower learning rate of 1e-

5 across both datasets, indicating its robustness in scenarios 

where fine-tuning with lower learning rates is required. 

 

These results provide important insights into the 

effectiveness of different optimization algorithms for deep 

learning models. While Momentum SGD and Adam remain 

strong contenders for many tasks, Lion stands out for its 

stability at low learning rates, making it a promising option 

for certain applications where learning rate selection is 

critical. The impact of learning rate variation was also 

highlighted, emphasizing the need for careful tuning of this 
hyperparameter in order to achieve optimal performance. 

 

FUTURE WORK 

 

While this research provides valuable insights into the 

performance of various optimization algorithms, several 

avenues for future research exist that could further enhance 

our understanding of deep learning optimizers and their 

applications: 

 

 Exploration of Additional Datasets:  
This study focused on two widely used datasets (MNIST 

and CIFAR-10), which are relatively simple compared to 

more complex tasks such as object detection or natural 

language processing. Future work could involve testing the 

algorithms on larger and more complex datasets like 

ImageNet or COCO to determine if the observed trends hold 

in more challenging settings. 

 

 Incorporating Regularization Techniques:  

Regularization methods such as dropout, L2 

regularization, and batch normalization can influence the 

performance of optimization algorithms. Future studies could 
incorporate these techniques to assess how they interact with 

various optimizers and their impact on generalization and 

model robustness. 

 

 Hyperparameter Optimization:  

While this study focused on a specific set of learning 

rates, further research could explore a more systematic 

hyperparameter optimization approach, such as grid search or 

Bayesian optimization, to identify the most optimal 

configurations for each optimizer. This could help enhance 

the performance of each method and provide a more precise 
comparison. 

 

 Optimization for Specific Architectures:  

Deep learning models can vary greatly in their 

architecture, from convolutional neural networks (CNNs) for 

image tasks to transformers for NLP tasks. The impact of 

optimizers might differ depending on the architecture being 

used. Future work could involve comparing the performance 

of optimization algorithms in a broader variety of model 

architectures to see how they perform in domain-specific 

settings. 

 

In summary, this research provides a solid foundation 

for understanding the performance of different optimization 

algorithms across standard datasets. The results highlight the 
importance of algorithm selection and hyperparameter tuning 

in achieving optimal model performance. As deep learning 

applications evolve and become more complex, further 

research into optimization strategies will be essential for 

pushing the boundaries of model accuracy, stability, and 

efficiency. 
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