
Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 593

Comparative Study of Deep Learning

Optimizers: SGD, Momentum SGD,

RMSProp, AMSGrad, Adam, Yogi, and Lion

Ibrahim Khalil Shehada1; Rasha Ragheb Atallah2; Ashraf Yunis Maghari3

1Faculty of Information Technology, Islamic University Department of Computer Science Al-Aqsa

University, P.O. Box 4051, Gaza, Palestinef Gaza, P.O. Box 108, Gaza, Palestine
2Department of Computer System & Technology, Faculty of Computer Science & Information Technology

University Malaya Kuala Lumpur, Malaysia, Al-Aqsa University, P.O. Box 4051, Gaza, Palestinef Gaza,

P.O. Box 108, Gaza, Palestine
3Faculty of Information Technology, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine

Publication Date: 2025/08/19

Abstract: In order to increase prediction accuracy, deep learning models must be trained by adjusting parameters to

minimize a loss function. In supervised learning, the mapping between inputs and their right outputs is learned by training

models using labeled input examples. In order to minimize mistakes, predictions are compared to actual outcomes, and

optimization methods are used to adjust parameters. Until convergence is reached, these algorithms go through several

cycles of iteration. Stochastic Gradient Descent (SGD), Momentum SGD, RMSProp, AMSGrad, Adam, Yogi, and Lion are

the seven optimization techniques that are evaluated in this study based on training accuracy, test accuracy, training loss,

and sensitivity to learning rate. MNIST and CIFAR-10 were the two benchmark datasets used in the experiments. SGD with

a learning rate of 0.5 had the best test accuracy of 99.14% and the highest training accuracy of 99.89% on MNIST. With

test accuracy of 99.15% and 98%, respectively, at a learning rate of 1e-2, Momentum SGD and Adam likewise demonstrated

strong performance. Optimizers like Yogi and Lion, on the other hand, performed competitively at lower learning rates but

suffered at higher ones; at 1e-5, Lion's test accuracy was 98.69%. All optimizers displayed comparatively decreased

accuracies for CIFAR-10, which was indicative of the dataset's increased complexity. Momentum SGD outperformed other

optimizers including Adam, Yogi, and Lion, achieving the highest training accuracy of 98.90% and the best test accuracy of

72.94% at a learning rate of 1e-2. Lion showed better performance and stability on both datasets at a low learning rate of

1e-5. These results highlight how crucial it is to choose learning rates and optimization techniques that are specific to the

features of each dataset.

How to Cite: Ibrahim Khalil Shehada; Rasha Ragheb Atallah; Ashraf Yunis Maghari (2025) Comparative Study of Deep Learning

Optimizers: SGD, Momentum SGD, RMSProp, AMSGrad, Adam, Yogi, and Lion. International Journal of Innovative

Science and Research Technology, 10(8), 593-601. https://doi.org/10.38124/ijisrt/25aug007

I. INTRODUCTION

Deep learning models have become increasingly

popular due to their remarkable performance in areas like

image classification[1], speech recognition, and natural

language processing, and they depend significantly on

optimization techniques to refine model parameters. Because
of their exceptional performance in domains like speech

recognition, picture classification, and natural language

processing, deep learning models have grown in

popularity[2]. However, in order to fine-tune their

parameters, these models heavily rely on optimization

approaches. These models are trained using an optimization

technique that adjusts parameters to minimize a particular

loss function, hence increasing the prediction accuracy of the

model. The goal of optimization is to improve the model's

performance by reducing the discrepancy between expected

and actual outcomes. Iteratively, the algorithm gradually

modifies the parameters in order to arrive at a solution that

ideally strikes a compromise between generalization and

accuracy

The model that trained on labeled datasets in supervised

learning, where each input is associated with a particular
output. In order to reduce the prediction error, the model

adjusts its parameters after generating predictions for a

particular input and comparing them to the actual

outcomes[3]. By using an optimization technique, the model

aims to minimize the objective function, sometimes referred

to as a loss function, which quantifies the difference between

the expected and actual results[4]. The model's efficacy in

terms of training time, overall accuracy, and generalizability

can be significantly impacted by the optimization algorithm

choice.

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25aug007

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 594

Numerous algorithms are used in the optimization

process, and each has certain benefits and drawbacks.

Because of their simplicity and efficiency, methods like

Stochastic Gradient Descent (SGD) and its variations are

well-known and widely used[5]. However, they have

drawbacks, including as sluggish rates of convergence and

increased susceptibility to hyperparameters, such the learning

rate. To address these issues, more advanced techniques such
as Momentum, RMSProp, AMSGrad, Adam, Yogi, and Lion

have been developed, with changes meant to improve training

speed, stability, and the ability to break out of local

minima[6]. Even with their extensive use, it is still unclear

which optimization technique performs best in different

scenarios, particularly when datasets and model topologies

vary.

This paper aims to the performance of seven

optimization algorithms—SGD, Momentum SGD,

RMSProp, AMSGrad, Adam, Yogi, and Lion—on two

widely used benchmark datasets—MNIST and CIFAR-10—
this work seeks to close this gap. Important parameters

including training accuracy, test accuracy, training loss, and

the impact of learning rate modifications will be the main

focus of the comparison. By carrying out these tests, the study

will provide information on the relative benefits and

drawbacks of every optimizer, which will help determine

which approaches are most suited for different deep learning

tasks.

The organization of the paper is as follows: Section II

presents a review of the existing literature regarding
optimization algorithms and their roles in machine learning

and deep learning. This section also emphasizes significant

research comparing different optimizers and their theoretical

underpinnings. Section III describes the methodology

employed in this study, detailing the optimization algorithms

that were assessed. Section IV covers the experimental design

and findings.

II. SIGNIFICANCE

The effectiveness of deep learning models is largely

dependent on the optimization process, and the model's
training and generalization are greatly influenced by the

optimization algorithm selection. Because of their

computational efficiency and ability to minimize the loss

function, gradient descent-based algorithms are especially

well-liked. However, there are still problems like delayed

convergence, hyperparameter sensitivity, and the possibility

of being stuck in saddle points or local minima. Numerous

optimization strategies have been proposed to address these

shortcomings.

Even though conventional techniques like SGD and its
momentum-enhanced variants offer simple answers, they

frequently encounter problems when working with complex,

high-dimensional data sets like pictures or videos, where the

loss landscape may contain a large number of local minimum

and saddle points. Because they can change the learning rate

during training, adaptive optimization techniques like

RMSProp, Adam, and its variants have proven more effective

in certain circumstances. This helps to improve stability and

accelerate convergence. Their efficacy is still dependent on a

number of variables, including the learning rate and other

hyperparameters. Furthermore, more modern techniques like

Yogi and Lion have emerged, promising better training

stability and convergence rate; nevertheless, their empirical

efficacy in comparison to existing optimizers has not yet been

fully explored.

This research intends to methodically evaluate

optimization algorithms on two popular datasets, MNIST and

CIFAR-10, in light of the large number of optimization

algorithms that are now accessible and the absence of a

definitive answer on which optimizer is best for specific

tasks. This research aims to offer useful insights to help

researchers and practitioners choose the best optimization

method for their deep learning projects by conducting such

an empirical analysis.

III. SCOPE OF RESEARCH

The evaluation of optimization strategies used in deep

learning model training for image classification tasks is the

main focus of this research. The MNIST and CIFAR-10

datasets were specifically chosen because they are well-

known standards that are frequently used in the literature to

assess different machine learning models and optimization

techniques. The results reported in this research are based on

experiments conducted using these datasets, however the

knowledge gained may also be applicable to other computer

vision and related tasks. Metrics including training and test
accuracy, training loss, and the impact of different learning

rates are used in the evaluation.

Although other performance metrics, like F1-score or

inference speed, may potentially be pertinent, they are not

within the purview of this research, which primarily aims to

examine algorithm performance in terms of accuracy and

stability.

IV. LITERATURE REVIEW

In order to increase accuracy and lower the loss function
during model training in machine learning and deep learning,

optimization strategies are crucial. These methods were

developed to address problems like as local minimum,

sluggish convergence, and the difficulty of choosing a

learning rate. The optimal algorithm for a given issue has

been the subject of numerous studies. We review recent

studies that compare the effectiveness of optimization

algorithms for various tasks, including their theoretical

foundations, actual findings, and relative effectiveness.

Gradient Descent (GD) and its variants form the
foundation for most modern optimization algorithms. The

primary approaches include Batch Gradient Descent (BGD),

Stochastic Gradient Descent (SGD), and Mini-batch GD,

each differing in how they use training samples to compute

gradients. BGD computes gradients using the entire dataset,

making it computationally expensive for large datasets[6].

SGD updates parameters for each individual sample, which

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 595

leads to faster convergence but introduces noise. Mini-batch

GD strikes a balance between the stability of BGD and the

efficiency of SGD[7].

SGD is particularly efficient in learning over-

parameterized neural networks by converging to global

minima that generalize well. However, it faces challenges

with learning rate selection and sensitivity to initialization[6].
To address these limitations, momentum-based approaches

were introduced. Momentum SGD accelerates convergence

by accumulating a velocity vector in the direction of

consistent gradient descent, which effectively dampens

oscillations in narrow valleys of the loss landscape[6].

Adaptive methods dynamically adjust learning rates for

each parameter, offering improvements over fixed learning

rate approaches. The Adagrad method, for example, scales

learning rates inversely proportional to the square root of

accumulated squared gradients. While effective for sparse

data, Adagrad suffers from rapidly diminishing learning rates
in dense gradient scenarios.

RMSProp was developed to address Adagrad’s learning

rate decay issue by using exponential moving averages of

squared gradients, ensuring a more consistent learning rate. It

has demonstrated improved performance in non-convex

optimization problems, which are common in deep learning.

Momentum and adaptive integrated methods have led to

significant advancements. Adam, for example, combines the

benefits of RMSProp with momentum by using both first and
second moment estimates of gradients. Theoretical analysis,

however, revealed potential issues that affect its practical

implementation. This led to the development of AMSGrad,

which modifies Adam by using long-term memory of past

gradients to ensure better convergence.

Zaheer et al. propose Yogi as a solution to Adam's issues

with learning rate decay, which can cause divergence in non-

convex settings. Yogi controls the effective learning rate and

ensures convergence, showing improvements in

generalization when the mini-batch size increases.

Several studies have compared optimization algorithms

based on various tasks. Mustapha et al. evaluated nine

optimizers, including stochastic, momentum, Nesterov,

AdaGrad, AdaDelta, RMSProp, Adam, AdaMax, and

Nadam, using ophthalmology data. Their findings showed

that AdaGrad achieved the best mean absolute error (0.3858)

in just 53 iterations, while AdaDelta performed the worst

(0.6035 in 6000 iterations). This evaluation aimed to identify

the most effective optimizer for keratoconus detection[8].

Zaheer and Shaziya compared six optimizers on four
image datasets, showing that Adam achieved the highest

testing accuracy (0.9826 on MNIST and 0.9855 on CIFAR-

10), while RMSProp excelled in training accuracy. Their

paper also explored the performance of SGD, providing

experimental evidence of its satisfactory results in over-

parameterized networks[9].

Another algorithm derived through symbolic discovery

that emphasizes sign-based updates combined with

momentum. Lion has shown competitive performance in

deep learning tasks, especially in low learning rate scenarios,

where it demonstrates stable convergence behavior[10]. In

this paper experimentally evaluates Lion’s stability and

efficiency in comparison to six optimizers, particularly under

different fixed learning rate regimes. We find that Lion
performs exceptionally well at low learning rates, supporting

the growing evidence that it strikes a balance between

simplicity, convergence speed, and robustness. This makes it

a promising alternative in diverse optimization landscapes.

V. METHODOLOGY

A. Experimental Setup

This research aims to compare the performance of

seven deep learning optimization algorithms—Stochastic

Gradient Descent (SGD), Momentum SGD, RMSProp,

AMSGrad, Adam, Yogi, and Lion—using two widely used
benchmark datasets: MNIST and CIFAR-10. The

performance of each optimizer is evaluated based on key

metrics such as training accuracy, test accuracy, training loss,

and the impact of learning rate. The experiments were carried

out using Python and TensorFlow, leveraging the power of

GPU acceleration for model training.

B. Datasets

 MNIST:

The MNIST (Modified National Institute of Standards
and Technology) dataset is a large collection of handwritten

digits. It contains 60,000 training images and 10,000 testing

images, each 28x28 pixels, in grayscale. This dataset is

commonly used for image classification tasks and is widely

considered a standard benchmark for evaluating machine

learning algorithms. Due to its relatively simple nature,

MNIST serves as a suitable dataset for comparing basic

optimization techniques in deep learning.

 CIFAR-10:

The CIFAR-10 dataset consists of 60,000 32x32 color

images in 10 classes, with 6,000 images per class. The dataset
is split into 50,000 training images and 10,000 testing images.

CIFAR-10 is considered a more challenging dataset than

MNIST due to the higher complexity of the images and the

greater diversity of classes. It is often used for evaluating

deep learning models' performance in tasks such as image

classification and object recognition.

Both datasets are preprocessed before training, with

pixel values normalized to the range [0, 1] to help the

optimization algorithms converge more efficiently.

C. Neural Network Architecture

For both datasets, a simple convolutional neural

network (CNN) architecture was used for training. The

architecture consists of the following layers:

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 596

 Input layer: The input layer receives the image data

(28x28 pixels for MNIST and 32x32 pixels for CIFAR-

10).

 Convolutional layers: These layers apply convolutional

filters to extract features from the input images. Each

convolutional layer is followed by a ReLU activation

function to introduce non-linearity and improve learning

capacity.

 Max-pooling layers: Max-pooling layers reduce the

spatial dimensions of the feature maps, helping to

decrease the number of parameters and computational

load.

 Fully connected layers: These layers perform high-level

reasoning by connecting all features learned by the

convolutional layers. A softmax activation is used in the

output layer to classify the images into one of the 10

classes.

The network is trained using cross-entropy loss for
classification tasks, and the categorical accuracy metric is

used to evaluate performance.

D. Optimization Algorithms

The following optimization algorithms were evaluated

in this study:

 Stochastic Gradient Descent (SGD):

A classic optimization algorithm that updates the

model's parameters using the gradient of the loss function

computed from a single training sample. This algorithm is

computationally efficient but can exhibit noisy updates and
may struggle with convergence in complex datasets.

 Momentum SGD:

Momentum-based SGD modifies the basic SGD by

introducing a term that accelerates the updates in the direction

of the gradient, helping the algorithm escape local minima

and speeding up convergence.

 RMSProp:

RMSProp adjusts the learning rate for each parameter

by considering the average of recent gradients, allowing for
adaptive learning rates. This helps stabilize the training

process by adapting to the scale of the gradients, especially

for noisy datasets.

 AMSGrad:

AMSGrad is a modification of RMSProp designed to

ensure that the learning rate does not increase during training.

It addresses issues in RMSProp related to the variability of

the learning rate, offering more stable convergence.

 Adam:

The Adam optimizer is an adaptive method that
combines the advantages of both RMSProp and Momentum.

It computes adaptive learning rates for each parameter by

using both the first-order (momentum) and second-order

(RMS) moment estimates of the gradients. Adam is widely

used in deep learning for its robustness and efficient handling

of sparse gradients.

 Yogi:

Yogi is a recent variant of Adam that addresses the

problem of excessively large updates in the Adam optimizer.

It modifies the second moment estimate by introducing a

mechanism to avoid large, unstable steps during training, thus

improving stability.

 Lion:
Lion is a novel optimizer that emphasizes robust and

stable convergence, particularly at low learning rates. It

combines the benefits of momentum with adaptive learning

rates to offer better stability in optimization, especially in

complex or noisy loss landscapes.

Each of these optimizers is tested with different learning

rates to evaluate their sensitivity and performance in training

deep learning models.

E. Hyperparameter Settings

The training process involves tuning several
hyperparameters to optimize performance. The following

hyperparameters were used across all experiments:

 Batch Size: 128

 Epochs: 15

 Learning Rates:

For each optimizer, multiple learning rates were tested,

including values such as 0.5, 1e-2, 1e-3, and 1e-5, to evaluate

the impact of learning rate on model performance.

 Optimizer-Specific Parameters:

For each optimizer (e.g., Momentum for Momentum

SGD, β1 and β2 for Adam and AMSGrad), default values

were used as specified in the respective literature (e.g., β1 =

0.9, β2 = 0.999 for Adam).

The models were trained and evaluated under these

settings for both MNIST and CIFAR-10 datasets.

F. Evaluation Metrics

The following evaluation metrics were used to assess
the performance of each optimizer:

 Training Accuracy: The accuracy of the model on the

training set after each epoch.

 Test Accuracy: The accuracy of the model on the test set

after training completion.

 Training Loss: The loss value computed on the training

set during the training process.

 Convergence Speed: The number of epochs required to

reach a certain level of accuracy or loss, providing insight

into the efficiency of each optimization method.

G. Experimental Procedure

The experiments were conducted as follows:

 The neural network models were initialized with random

weights using a Xavier initialization to ensure that the

starting point of training does not adversely affect the

optimization process.

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 597

 Each optimization algorithm was trained separately on the

MNIST and CIFAR-10 datasets, with the training process

monitored at regular intervals to track the loss and

accuracy.

 The performance of each algorithm was evaluated based

on the final test accuracy and the stability of the training

process, focusing on how the learning rate influenced
each optimizer's performance.

 The results were compared to determine which optimizer

provided the best balance between training speed,

accuracy, and stability.

H. Statistical Analysis

To ensure the robustness of the results, each experiment

was repeated three times with different random

initializations. The mean and standard deviation of the

performance metrics (training accuracy, test accuracy, and

training loss) were computed across these repetitions to
account for the inherent randomness in the training process.

Statistical significance was assessed using a t-test to compare

the performance of the optimizers under different learning

rate settings.

VI. EXPERIMENTAL RESULT AND ANALYSIS

As shown in table 1, To evaluate the performance of

various optimization algorithms on handwritten digit

classification, we conducted a series of experiments using the

MNIST dataset. The study compared the training and testing

accuracies of eight widely used optimizers—SGD,

Momentum (MOMEN), TUMSGD, RMSPROP,
AMSGRAD, ADAM, YOGI, and LION—across three

different learning rates: 0.5, 1e-2, and 1e-5. The results

revealed that, at a high learning rate of 0.5, the traditional

SGD optimizer achieved the highest test accuracy (0.9914),

closely followed by MOMEN and TUMSGD. However, with

a moderate learning rate of 1e-2, adaptive optimizers such as

ADAM and RMSPROP showed improved generalization,

with ADAM reaching a test accuracy of 0.9876. Interestingly,

at the lowest learning rate (1e-5), all optimizers performed

exceptionally well in both training and testing, with LION

slightly outperforming others by achieving a test accuracy of

0.9869. These findings suggest that while traditional
optimizers are effective with larger learning rates, adaptive

methods like ADAM and LION demonstrate stable and

consistent performance across varying learning rates. This

underscores the importance of selecting appropriate

optimization techniques and learning rates to enhance model

accuracy and generalization.

Table 1 Comparosion of Optimizers on MNIST Dataset(Training vs. Test Accuracy)

As shown in figure 1, the visualizations of training

accuracy and training loss across epochs for the MNIST
dataset offer further insight into the optimization behavior

under different learning rates. At a high learning rate of 0.5,

as shown in the top plots, optimizers like Momentum,

TUMSGD, and LION exhibit a rapid increase in training

accuracy, achieving near-perfect values within the first few

epochs, while others such as SGD and RMSPROP converge

more slowly or exhibit unstable behavior. The corresponding

loss curves support this, showing a sharp initial drop in loss
for adaptive optimizers, whereas SGD suffers from high loss

values and slower convergence. At a more moderate learning

rate of 1e-2, the training accuracy curves indicate stable

learning for most optimizers, with TUMSGD, ADAM, and

YOGI showing smooth and consistent accuracy growth.

However, the training loss plot reveals a significant instability

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 598

in LION, as evidenced by sharp spikes, suggesting sensitivity

to this particular learning rate. These trends highlight the

importance of learning rate tuning per optimizer. Specifically,

adaptive methods such as Momentum and TUMSGD provide

both faster convergence and greater training stability across

learning rates, while some optimizers (e.g., LION) exhibit

volatility that may impair performance despite high final

accuracy.

Fig 1 a, b, c, d, e, f: Show the Different Epoch for the Result

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 599

Table 2 Comparison of Optimizers on CIFAR-10 (Training and Testing Accuracy)

As shown in table 2, To further assess the
generalizability and robustness of different optimization

algorithms, a comparative experiment was conducted using

the CIFAR-10 dataset. The analysis evaluated eight

optimizers—SGD, Momentum (MOMEN), TUMSGD,

RMSPROP, AMSGRAD, ADAM, YOGI, and LION—

across three learning rates (0.5, 1e-2, and 1e-5), measuring

both training and testing accuracy. At a high learning rate of

0.5, adaptive methods such as ADAM, MOMEN, TUMSGD,

and LION achieved perfect training and testing accuracy

(1.0000), while SGD and RMSPROP performed poorly on

the test set, with test accuracies of only 0.6382 and 0.6301
respectively, indicating potential overfitting or instability.

When the learning rate was decreased to 1e-2, MOMEN and

TUMSGD remained robust, attaining test accuracies of
0.7161 and 0.6470 respectively, while other optimizers such

as AMSGRAD and ADAM suffered a notable performance

drop. At the smallest learning rate (1e-5), LION

outperformed all others in generalization with a test accuracy

of 0.6264, followed by MOMEN and TUMSGD. Overall, the

results suggest that while some optimizers overfit or fail to

generalize at high learning rates, adaptive methods such as

LION and TUMSGD demonstrate better stability and

adaptability across different settings. These findings

highlight the significance of choosing both an appropriate

optimizer and learning rate for achieving reliable
performance on more complex datasets like CIFAR-10.

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 600

Fig 2 a, b, c, d, e, f: Comparison of Optimizer Performance on CIFAR-10 Across Varying Learning Rates

As shown in figure 2, In this experiment, various

optimization algorithms were evaluated on the CIFAR-10

dataset to assess their performance under different learning

rates. The results demonstrate that the choice of optimizer and

learning rate significantly influences the training dynamics.
At a higher learning rate (0.5), optimizers such as Adam,

RMSprop, and Momentum SGD exhibited rapid

convergence, achieving higher training accuracy in fewer

epochs. However, excessive learning rates occasionally led to

unstable training or suboptimal convergence in certain

optimizers. At a moderate learning rate (1e-2), most

optimizers showed consistent and steady improvements in

accuracy while maintaining relatively low loss values.

Conversely, with a very low learning rate (1e-5), training

progressed slowly across all optimizers, indicating

underfitting and insufficient learning updates. Overall,

adaptive optimizers like Adam and Yogi consistently
outperformed traditional methods such as plain SGD,

especially in terms of convergence speed and final accuracy.

These findings highlight the importance of selecting an

appropriate optimizer and tuning the learning rate to balance

convergence efficiency and model performance.

VII. CONCLUSION AND FUTURE WORK

This paper presents a comprehensive comparison of

seven popular optimization algorithms—Stochastic Gradient

Descent (SGD), Momentum SGD, RMSProp, AMSGrad,

Adam, Yogi, and Lion—focusing on their performance

across two benchmark datasets, MNIST and CIFAR-10. The

evaluation was based on key metrics such as training

accuracy, test accuracy, training loss, and the impact of

learning rate variations. The findings highlight the diverse

strengths and weaknesses of each optimization method,

underscoring the critical role that both the choice of algorithm
and the learning rate play in determining model performance.

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug007

IJISRT25AUG007 www.ijisrt.com 601

From the experiments, it was observed that SGD with a

learning rate of 0.5 achieved the highest training accuracy on

MNIST (0.9989), while Momentum SGD showed excellent

performance on both MNIST and CIFAR-10, with the highest

training accuracy on CIFAR-10 (98.90%) and the best test

accuracy (72.94%). On the CIFAR-10 dataset, other

optimizers like Adam, Yogi, and Lion showed moderate

performance compared to Momentum SGD. However, Lion
demonstrated superior stability at a lower learning rate of 1e-

5 across both datasets, indicating its robustness in scenarios

where fine-tuning with lower learning rates is required.

These results provide important insights into the

effectiveness of different optimization algorithms for deep

learning models. While Momentum SGD and Adam remain

strong contenders for many tasks, Lion stands out for its

stability at low learning rates, making it a promising option

for certain applications where learning rate selection is

critical. The impact of learning rate variation was also

highlighted, emphasizing the need for careful tuning of this
hyperparameter in order to achieve optimal performance.

FUTURE WORK

While this research provides valuable insights into the

performance of various optimization algorithms, several

avenues for future research exist that could further enhance

our understanding of deep learning optimizers and their

applications:

 Exploration of Additional Datasets:
This study focused on two widely used datasets (MNIST

and CIFAR-10), which are relatively simple compared to

more complex tasks such as object detection or natural

language processing. Future work could involve testing the

algorithms on larger and more complex datasets like

ImageNet or COCO to determine if the observed trends hold

in more challenging settings.

 Incorporating Regularization Techniques:

Regularization methods such as dropout, L2

regularization, and batch normalization can influence the

performance of optimization algorithms. Future studies could
incorporate these techniques to assess how they interact with

various optimizers and their impact on generalization and

model robustness.

 Hyperparameter Optimization:

While this study focused on a specific set of learning

rates, further research could explore a more systematic

hyperparameter optimization approach, such as grid search or

Bayesian optimization, to identify the most optimal

configurations for each optimizer. This could help enhance

the performance of each method and provide a more precise
comparison.

 Optimization for Specific Architectures:

Deep learning models can vary greatly in their

architecture, from convolutional neural networks (CNNs) for

image tasks to transformers for NLP tasks. The impact of

optimizers might differ depending on the architecture being

used. Future work could involve comparing the performance

of optimization algorithms in a broader variety of model

architectures to see how they perform in domain-specific

settings.

In summary, this research provides a solid foundation

for understanding the performance of different optimization

algorithms across standard datasets. The results highlight the
importance of algorithm selection and hyperparameter tuning

in achieving optimal model performance. As deep learning

applications evolve and become more complex, further

research into optimization strategies will be essential for

pushing the boundaries of model accuracy, stability, and

efficiency.

REFERENCES

[1]. Wu, H., Q. Liu, and X. Liu, A review on deep learning

approaches to image classification and object

segmentation. Computers, Materials & Continua,
2019. 60(2).

[2]. Deng, L., Deep learning: from speech recognition to

language and multimodal processing. APSIPA

Transactions on Signal and Information Processing,

2016. 5: p. e1.

[3]. Mostafa, H., V. Ramesh, and G. Cauwenberghs, Deep

supervised learning using local errors. Frontiers in

neuroscience, 2018. 12: p. 608.

[4]. Abolghasemi, M., et al., How to effectively use

machine learning models to predict the solutions for

optimization problems: lessons from loss function.
arXiv preprint arXiv:2105.06618, 2021.

[5]. Ab Wahab, M.N., S. Nefti-Meziani, and A. Atyabi, A

comprehensive review of swarm optimization

algorithms. PloS one, 2015. 10(5): p. e0122827.

[6]. Haji, S.H. and A.M. Abdulazeez, Comparison of

optimization techniques based on gradient descent

algorithm: A review. PalArch’s Journal of

Archaeology of Egypt/Egyptology, 2021. 18(4): p.

2715-2743.

[7]. Ruder, S., An overview of gradient descent

optimization algorithms. 2016.

[8]. Mustapha, A., L. Mohamed, and K. Ali. Comparative
study of optimization techniques in deep learning:

Application in the ophthalmology field. in Journal of

physics: conference series. 2021. IOP Publishing.

[9]. Zaheer, R. and H. Shaziya. A study of the optimization

algorithms in deep learning. in 2019 third international

conference on inventive systems and control (ICISC).

2019. IEEE.

[10]. Chen, L., et al., Lion secretly solves constrained

optimization: As lyapunov predicts. arXiv preprint

arXiv:2310.05898, 2023.

https://doi.org/10.38124/ijisrt/25aug007
http://www.ijisrt.com/

