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Abstract: Minimum Resolvable Temperature Difference (MRTD) remains a key indicator of thermal imaging system 

performance, reflecting the ability to distinguish subtle temperature variations at defined spatial frequencies. As applications 

expand into high-demand areas such as autonomous surveillance, military missions, and space exploration, achieving lower 

MRTD values becomes increasingly critical. Recent advancements highlight the transformative role of quantum detectors, 

like HgCdTe and Quantum Well Infrared Photodetectors (QWIPs), which offer improved sensitivity, reduced noise, and 

broader spectral response, significantly lowering MRTD thresholds. These technologies enhance thermal image resolution 

and clarity under challenging operational conditions. Concurrently, artificial intelligence (AI) is reshaping MRTD 

assessment by enabling real-time optimisation of imaging parameters. AI-driven algorithms adapt to environmental 

variables, scene complexity, and target features, facilitating automatic performance tuning and enhanced contrast. Machine 

learning techniques further support noise reduction and detail enhancement, pushing MRTD performance boundaries. 

Complementing these are adaptive resolution strategies that enable thermal systems to dynamically adjust spatial and 

thermal accuracy in response to operational demands. Additionally, innovations in sensor miniaturisation are fuelling the 

development of lightweight, portable thermal imagers for use in wearable and unmanned systems. These integrated 

technologies are defining a new era of high-performance, intelligent thermal imaging with unprecedented MRTD 

capabilities. 
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I. INTRODUCTION 

 

Minimum Resolvable Temperature Difference (MRTD) 

is a foundational metric used to assess the sensitivity and 

resolving power of thermal imaging systems1,2,3. It denotes 

the smallest temperature differential that a system can 

distinguish at a specified spatial frequency, thereby linking 

both resolution and thermal sensitivity in a single 

performance indicator. Traditionally, MRTD has been 

measured through observer-based methods under controlled 

laboratory environments, where standardized targets and 
human evaluation are employed to determine system. While 

these conventional approaches provide a baseline for sensor 

performance, they fall short when extrapolated to the 

complexity of real-world conditions. As thermal imaging 

finds broader applications in defence, aerospace, autonomous 

navigation, industrial inspections, and medical diagnostics, 

the limitations of static MRTD measurements are becoming 

increasingly apparent. Environmental variables such as 

atmospheric attenuation, humidity, fog, and thermal clutter 

substantially influence system performance in the field, 

making it difficult to rely solely on lab-derived MRTD values. 

These inconsistencies highlight the urgent need for a 

dynamic, adaptive framework that accounts for 

environmental variabilities and system behaviour in real-

time. The future trajectory of MRTD research is thus shifting 

toward intelligent systems capable of automated assessment, 

environmental compensation, and real-time optimization. 

Innovations such as AI-assisted image interpretation, physics-

informed simulation models, and embedded environmental 

sensing are enabling next-generation thermal imagers to self-
calibrate and maintain consistent performance across a range 

of conditions. 

 

Additionally, scene-dependent algorithms and real-time 

environmental data fusion are providing new methods to 

quantify and minimize MRTD degradation during actual 

operations. This report delves into these emerging 

developments, focusing on how environmental conditions 

affect MRTD performance and what strategies, both 
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computational and hardware-based, are being developed to 

ensure stable, reliable imaging capabilities under diverse and 

unpredictable scenarios. (as shown in Fig.1). 

 

 
Fig 1 Schematic of Modern MRTD Interpretation 

Framework 

 

II. THE EVOLUTION OF MRTD: FROM 

OBSERVER MODELS TO INTELLIGENT 

SYSTEMS 

 
Initial MRTD models were grounded in empirical 

testing using human observers and standardized bar targets 

(as shown in Fig.2). However, these methods are plagued by 

subjectivity and repeatability issues. Recent efforts have 

shifted toward observer-independent, AI-driven metrics that 

simulate human perception with high fidelity, enabling 

automated performance monitoring. The movement toward 

synthetic vision and deep-learning-enabled observer models 

offers a pathway for real-time MRTD estimation without 

human input. These tools can assess complex scenes 

adaptively, incorporating contextual awareness, which is not 
possible with conventional MRTD frameworks. 

 

 
Fig 2 Target for MRTD Test. 

 

Modern thermal imaging systems increasingly rely on 

real-time MRTD evaluation and embedded diagnostics, 

crucial for defence, aerospace, and autonomous platforms. 

Traditional offline MRTD testing lacks adaptability in 

dynamic environments. Contemporary methods use 

intelligent algorithms and machine learning to estimate 

MRTD from live video, eliminating artificial targets. These 

algorithms run on embedded hardware like FPGAs and 

GPUs, enabling low-latency processing. Integrated 

diagnostics monitor sensor health and environmental 

conditions, facilitating real-time adjustments and predictive 
maintenance. This approach improves reliability, operational 

readiness, and system longevity by enabling continuous 

performance tracking and proactive servicing in mission-

critical applications. 

 

III. ADAPTIVE MRTD UNDER VARYING 

ENVIRONMENTAL CONDITIONS 

 

One of the biggest future challenges lies in maintaining 

low MRTD under unpredictable and dynamic environmental 

conditions. Atmospheric turbulence, humidity, and cluttered 
backgrounds degrade performance significantly.  Emerging 

trends focus on: 

 

 Environmental compensation algorithms 

 Scene-based adaptive contrast enhancement 

 Real-time correction filters integrated into the image 

processing pipeline 

 

Research is also exploring multispectral fusion systems 

where visible and IR data are combined to minimize MRTD 

degradation Minimum Resolvable Temperature Difference 
(MRTD), while fundamentally a property of a thermal 

imaging system, is significantly influenced by environmental 

factors that distort, attenuate, or obscure thermal signatures. 

As thermal imagers are increasingly deployed in diverse real-

world scenarios—including battlefield surveillance, search 

and rescue operations, industrial inspections, and space 

missions—the ability of these systems to maintain consistent 

MRTD under fluctuating environmental conditions has 

become a critical research focus. Environmental conditions 

introduce various sources of error and uncertainty that 

degrade thermal image quality. Key among these is 

atmospheric attenuation, humidity, wind, ambient 
temperature, solar loading, and background clutter. For 

instance, atmospheric gases such as water vapor and carbon 

dioxide absorb and scatter infrared radiation in specific 

spectral bands, resulting in contrast loss and reduced thermal 

sensitivity. High humidity can cause water droplets in the air 

to scatter thermal energy, creating noise in the image and 

increasing the effective MRTD. Moreover, in outdoor 

environments, solar heating and reflections from terrain and 

objects introduce additional thermal gradients that may mask 

or distort target features. These dynamic and spatially varying 

interferences cause thermal imagers to suffer from elevated 
MRTD values, especially when attempting to resolve low-

contrast targets against complex backgrounds. To address 

these challenges, adaptive MRTD techniques are being 

developed (as shown in Fig.3). These include both hardware-

based and software-driven solutions. On the hardware side, 

sensors with broader dynamic range and higher thermal 

sensitivity (e.g., using vanadium oxide or Type-II superlattice 

detectors) help in distinguishing targets from noisy 

https://doi.org/10.38124/ijisrt/25aug556
http://www.ijisrt.com/


Volume 10, Issue 8, August – 2025                                International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                                             https://doi.org/10.38124/ijisrt/25aug556 
 

 

IJISRT25AUG556                                                                 www.ijisrt.com                                                                                          1109  

backgrounds. Spectral filtering is also used to isolate useful 

infrared bands less affected by atmospheric absorption. 

Software-driven adaptive compensation techniques are where 

much of the innovation is currently focused. Scene-based 

non-uniformity correction (SBNUC) is one such technique 

that continuously adjusts detector response based on real-time 

scene analysis, correcting for fixed pattern noise and dynamic 

drift. 
 

 
Fig 3 Schematic of Adaptive MRTD Under Varying 

Environmental Conditions 

 

Additionally, contrast enhancement algorithms 

dynamically adjust brightness and contrast parameters to 

emphasize subtle thermal differences in cluttered 

environments. More advanced systems incorporate machine 

learning models trained to recognize and classify 

environmental interference patterns. Recent research also 

focuses on fusing data from multiple sensors, such as 
combining visible light, near-infrared, and long-wave 

infrared (LWIR) imaging, to mitigate the effects of 

environmental degradation. Another promising direction is 

the development of physics-informed MRTD models that 

integrate real-time environmental sensing. By embedding 

temperature, humidity, and atmospheric pressure sensors 

within the imaging system, it becomes possible to 

dynamically correct for environmental factors using radiative 

transfer models like MODTRAN. Adaptive MRTD under 

varying environmental conditions is a multifaceted challenge 

that requires the convergence of advanced sensor 

technologies, real-time signal processing, and AI-based 
interpretation. The goal is to ensure that thermal imagers can 

maintain optimal performance regardless of operational 

context. 

 

IV. REAL-TIME MRTD EVALUATION AND 

EMBEDDED DIAGNOSTICS 

 

The integration of embedded diagnostics within thermal 

imagers is gaining attention. These modules can perform on-

the-fly MRTD assessment using AI classifiers trained on large 

thermal datasets. In field-deployed scenarios like UAVs or 
missile seekers, these self-diagnostic tools offer autonomous 

performance validation, reducing dependency on external 

calibration. Microcontroller- and FPGA-based solutions are 

being developed to perform MRTD evaluations directly on 

the imaging hardware, improving responsiveness and 

reliability. In modern thermal imaging systems, real-time 

performance monitoring is essential, especially for defence, 

aerospace, and autonomous applications. Traditional MRTD 

evaluation methods, relying on offline test targets, are 

inadequate in dynamic or remote environments. The 

integration of real-time MRTD assessment with embedded 

diagnostics has enhanced system reliability and autonomy. 
These systems use adaptive algorithms to estimate MRTD 

from live video feeds, removing the need for artificial targets. 

Key metrics like contrast, edge sharpness, and thermal 

gradients are analysed on a per-frame basis using machine 

learning or statistical models. These algorithms operate on 

embedded platforms such as FPGAs, GPUs, or 

microcontrollers, enabling fast, efficient diagnostics. This is 

vital for mobile platforms, ensuring real-time feedback 

without external computation. Furthermore, embedded 

MRTD diagnostics often integrate with other sensor modules 

to contextualize system performance. For instance, thermal 
sensors embedded with temperature, humidity, and vibration 

detectors can infer whether environmental factors are causing 

performance degradation. By fusing this data with image-

based MRTD estimations, the system can apply real-time 

corrections, adjust processing algorithms, or alert operators to 

specific anomalies. 

 

 
Fig 4 Block Diagram for Real-Time MRTD Evaluation 

 

Advanced systems even include feedback loops that 

optimize system parameters such as integration time, gain 

control, or digital filtering based on MRTD outputs. If the 
MRTD begins to rise due to sensor noise or thermal drift, the 

system may automatically enhance image stabilization, 

perform flat-field correction, or adjust lens focus. By 

continuously tracking MRTD trends over time, embedded 

systems can forecast performance degradation and 

recommend servicing or component replacement before 

failure occurs. This reduces downtime, enhances reliability, 

and extends the operational lifespan of the system—benefits 

that are especially valuable in military and aerospace 

domains. A real-time MRTD evaluation and embedded 

diagnostics represent a leap forward (as shown in Fig.4) in 
thermal imaging system design. These technologies enable 
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thermal imagers to become self-aware, self-adjusting, and 

self-monitoring—characteristics that are essential in modern, 

data-driven operational environments. 

 

V. MINIATURIZATION AND MRTD SCALING 

LAWS IN MICRO/NANO-IR SENSORS 

 

The trend toward smaller, lightweight imaging 
platforms demands that MRTD remain optimized even in 

miniaturized formats. Research in microbolometer arrays, 

photonic IR sensors, and MEMS-integrated IR systems shows 

promise. However, challenges such as thermal cross-talk, 

reduced fill-factor, and quantum noise continue to affect 

MRTD at micro-scales. New scaling laws are being proposed 

to understand the interplay between sensor geometry and 

thermal sensitivity, offering a pathway to predict MRTD for 

nanoscale devices. As thermal imaging technology advances 

toward portability, integration into wearables, unmanned 

platforms, and miniaturized surveillance systems, the push 
toward smaller and lighter infrared (IR) sensors have 

intensified. This trend, driven by both military and 

commercial demands, introduces new challenges in 

maintaining imaging performance, especially in terms of the 

Minimum Resolvable Temperature Difference (MRTD). The 

miniaturization of thermal imagers must contend with 

fundamental scaling laws that affect thermal sensitivity, 

resolution, and signal-to-noise characteristics. MRTD, in its 

classical definition, is influenced by the interplay of optical 

resolution, detector sensitivity, and noise performance. When 

transitioning from macro-scale systems to micro- and nano-

scale devices, several factors fundamentally change. Chief 
among them are reductions in aperture size, pixel pitch, and 

thermal capacity—all of which impact the system’s ability to 

detect and resolve small temperature differences. One major 

issue is the diffraction limit imposed by smaller optical 

elements. As lens sizes shrink, the ability of the system to 

focus infrared radiation sharply diminishes due to increased 

diffraction effects. This causes a broadening of the point 

spread function (PSF), leading to lower spatial resolution and 

increased MRTD. Moreover, the numerical aperture of 

miniaturized optics decreases, capturing less thermal 

radiation, which directly impacts detector sensitivity. 
Miniaturized detectors, such as those based on 

microbolometers or quantum well infrared photodetectors 

(QWIPs), face challenges related to thermal isolation and 

noise. As pixel sizes reduce to accommodate higher 

resolution on small dies, the thermal mass of individual pixels 

also decreases, making them more susceptible to ambient 

fluctuations and electronic noise. This increases the noise-

equivalent temperature difference (NETD), which correlates 

directly with MRTD degradation. Similarly, smaller detectors 

have lower signal levels due to reduced photon collection, 

necessitating more sensitive readout electronics and advanced 

noise reduction algorithms. To counter these effects, 
researchers are exploring new materials and architectures at 

the micro- and nanoscale. Vanadium oxide (VOx) and 

amorphous silicon microbolometers have been engineered for 

enhanced thermal isolation and higher responsivity. Further, 

nanostructured materials, including plasmonic meta-surfaces 

and superlattices, are being developed to manipulate and 

enhance IR absorption at specific wavelengths. These 

technologies promise to reduce MRTD by improving detector 

efficiency despite the constraints of miniaturization. Another 

strategy involves computational compensation. Super-

resolution imaging techniques are being used to overcome 

physical resolution limits, while AI-driven post-processing 

can reconstruct thermal images with an apparent lower 

MRTD by enhancing contrast and reducing noise. However, 

through innovative material science, novel fabrication 
techniques, and AI-enabled compensation algorithms, it is 

increasingly possible to achieve high-performance thermal 

imaging in miniature form factors. 

 

VI. QUANTUM THERMAL IMAGING AND 

THE THEORETICAL MRTD LIMIT 

 

 Role of Quantum Detectors in Redefining MRTD Limits 

Quantum infrared imaging, especially using photon 

entanglement and squeezed light states, is an emerging 

frontier. These techniques theoretically allow sub-shot-noise-
level thermal detection, potentially lowering MRTD beyond 

classical physical limits. While still experimental, quantum-

enhanced thermal sensors could achieve MRTD values an 

order of magnitude lower than state-of-the-art cryogenically 

cooled systems. Quantum detectors represent a cutting-edge 

advancement in thermal imaging technology, offering 

unparalleled sensitivity, spectral selectivity, and low-noise 

performance (as shown in Fig.5). These characteristics 

position them as critical enablers for pushing the boundaries 

of Minimum Resolvable Temperature Difference (MRTD), 

particularly in applications that demand ultra-precise thermal 

resolution under challenging conditions such as low signal 
environments, long-range surveillance, and deep-space 

exploration. Traditional thermal detectors like 

microbolometers rely on changes in material resistance due 

to absorbed infrared radiation. While effective and relatively 

inexpensive, their performance is constrained by thermal 

inertia, limited spectral sensitivity, and higher noise-

equivalent temperature differences (NETD). In contrast, 

quantum detectors such as Mercury Cadmium Telluride 

(HgCdTe), Type-II Superlattices (T2SL), Quantum Well 

Infrared Photodetectors (QWIPs), and Quantum Dot Infrared 

Photodetectors (QDIPs) utilize quantum mechanical effects 
like interband and intersubband transitions to detect incident 

infrared photons directly. One of the most profound 

advantages of quantum detectors is their high detectivity 

(D*), which allows them to discern extremely small 

differences in thermal radiation. Since MRTD is inversely 

related to both signal strength and system contrast, detectors 

with high D* values significantly lower the MRTD threshold 

by maximizing the response to minute temperature 

differences while minimizing noise. This is especially 

important in applications such as early warning systems, 

airborne targeting pods, and thermal astronomy, where 

detecting faint or distant heat sources is critical. Quantum 
detectors also offer tunable spectral sensitivity across mid-

wave infrared (MWIR) and long-wave infrared (LWIR) 

bands, and even into the short-wave infrared (SWIR) regime. 

This spectral tunability enables optimization of MRTD 

performance for specific operational wavelengths. Another 

transformative feature of quantum detectors is their high-

speed operation, with response times in the nanosecond to 
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microsecond range. This allows thermal imagers to operate at 

high frame rates, which is particularly valuable in dynamic 

scenarios such as missile guidance or hypersonic object 

tracking. Advancements in cryogenic and thermoelectric 

cooling have also addressed one of the primary challenges of 

quantum detectors—the need for low operating temperatures. 

 

 
Fig 5 Quantum Detectors in Redefining MRTD Limits 

 

In addition, quantum detector arrays are being 

integrated with on-chip processing to support intelligent 
signal conditioning and real-time MRTD evaluation. With the 

emergence of digital readout integrated circuits (DROICs) 

and system-on-chip (SoC) architectures, quantum detector-

based imagers are now capable of embedded diagnostics, 

dynamic range adaptation, and machine learning-based 

MRTD prediction. Quantum detectors are redefining the 

theoretical and practical limits of MRTD by providing high 

sensitivity, spectral agility, and fast response within compact 

platforms. 

 

VII. AI AND MACHINE LEARNING FOR 

PREDICTIVE MRTD MODELS 

 

Deep learning is revolutionizing thermal image 

processing. Predictive models can now estimate MRTD in 

real time, factoring in operational conditions, sensor status, 

and scene complexity. These models can also learn to 

optimize system parameters—like gain, integration time, and 

filter coefficients—to keep MRTD within mission-specific 

thresholds. Transfer learning and federated learning 

approaches are being considered to adapt MRTD models 

across different sensor platforms without needing retraining. 

The application of machine learning (ML) in thermal imaging 
has revolutionized the way we evaluate and optimize 

Minimum Resolvable Temperature Difference (MRTD). 

Historically, MRTD was determined through physical 

modelling or manual observation, but such methods are 

constrained by simplifications and human subjectivity. 

Machine learning introduces a paradigm shift, offering data-

driven approaches that can predict, enhance, and adapt 

MRTD performance dynamically and with unprecedented 

precision. At the core of ML-based MRTD evaluation is the 

ability of algorithms to learn complex, nonlinear relationships 

between image quality, sensor characteristics, environmental 
conditions, and system output. One of the major advantages 

of ML in this domain is its capacity for real-time adaptability. 

Unlike traditional threshold-based systems, ML models can 

generalize across different scenes, noise levels, and 

operational contexts, making them more robust to real-world 

variability. In addition to prediction, ML is increasingly being 

used for enhancement, actively improving the MRTD of a 

thermal image by optimizing contrast and reducing noise. 

Denoising autoencoders and generative adversarial networks 

(GANs) have proven effective in this regard. These models 

learn the statistical structure of thermal noise and can 
reconstruct cleaner, higher-quality thermal images from noisy 

inputs. This effectively lowers the apparent MRTD by 

revealing finer thermal details that would otherwise be lost. 

Moreover, hybrid approaches are emerging that integrate 

physics-based thermal models with ML algorithms. These 

physics-informed neural networks (PINNs) embed the 

governing equations of heat transfer and radiative emission 

directly into the ML framework, improving generalization 

and interpretability. Such models not only predict MRTD 

more accurately but also explain why performance is 

changing, aiding in diagnostics and system design. Despite 
these advances, challenges remain. Ensuring the 

explainability of ML predictions, dealing with data scarcity, 

and achieving real-time performance on low-power 

embedded systems are ongoing research topics. However, 

with the increasing availability of thermal datasets, improved 

edge AI hardware, and interdisciplinary collaboration, ML is 

rapidly becoming indispensable in the design, evaluation, and 

enhancement of thermal imaging systems. 

 

VIII. INTEGRATION WITH DIGITAL 

TWIN SYSTEMS 

 
Digital twin technology is now being applied to thermal 

imaging systems for predictive maintenance and performance 

tracking. MRTD is a core metric modelled in real-time 

simulations of sensor health and environmental performance. 

These virtual replicas can help forecast when MRTD 

performance will degrade and recommend reconfiguration or 

servicing. 

 

 MRTD vs. MNRC and Emerging Performance Metrics 

While Minimum Resolvable Temperature Difference 

(MRTD) has long served as the primary metric for evaluating 
the performance of thermal imaging systems, its limitations 

have prompted the emergence of complementary and, in some 

cases, alternative measures. Among these, the Minimum 

Number of Resolvable Cycles (MNRC) has gained traction as 

a more objective and comprehensive indicator of system 

capability. The evolving landscape of thermal sensing 

technologies—particularly in high-resolution, intelligent, and 

multispectral systems—necessitates a re-evaluation of how 

we define and measure image quality and performance. 

MRTD traditionally assesses the minimum temperature 

difference between a target and its background that an 

observer can detect at a given spatial frequency. This test 
typically involves four-bar targets and human observers, 

introducing variability and subjectivity into the evaluation. 

MRTD is influenced by optics, detector sensitivity, display 

characteristics, and observer interpretation, making it a 

system-level metric. However, as imaging systems become 

more autonomous and incorporate AI-driven detection and 

interpretation, the reliance on human perception in MRTD 
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testing becomes increasingly inadequate. The MNRC metric 

was developed in response to these limitations. Rather than 

focusing on temperature contrast, MNRC evaluates how 

many spatial cycles (or line pairs) a thermal imaging system 

can resolve across a range of conditions. This metric aligns 

better with digital image processing and algorithmic 

interpretation, as it is based on signal-to-noise ratios, 

modulation transfer functions (MTFs), and quantitative 
image quality analysis. In essence, MNRC provides a 

frequency-based resolution metric independent of subjective 

thermal contrast, offering a more stable and reproducible 

benchmark. MNRC is particularly effective for high-

resolution thermal imagers where the bottleneck is not 

necessarily thermal sensitivity (i.e., NETD or MRTD) but the 

ability to maintain spatial fidelity across fine details. This is 

critical for applications like facial recognition in thermal 

imagery, pattern recognition in security monitoring, or small 

object tracking in missile defence. In such use cases, the 

system’s ability to resolve numerous fine cycles, irrespective 
of temperature differential, becomes more relevant than 

traditional MRTD. Emerging performance metrics go even 

further. Task-based performance metrics, such as Johnson 

criteria (probability of detection, recognition, and 

identification) and Cycle-Based Thermal Contrast Metrics, 

are being incorporated into system evaluation, especially in 

military and surveillance systems where mission-specific 

performance is more important than theoretical limits. These 

metrics consider real-world constraints like motion blur, 

atmospheric distortion, scene dynamics, and clutter—factors 

not directly addressed by MRTD or MNRC. These metrics 

reflect how efficiently thermal systems convert physical 
thermal signals into actionable information, a vital capability 

for edge processing in resource-constrained environments (as 

illustrated in Fig. 6). With the rise of multispectral and 

hyperspectral infrared imaging, traditional MRTD is 

increasingly inadequate, as spectral contrast provides more 

meaningful differentiation than spatial resolution alone. New 

metrics, such as Spectral Resolution Figure of Merit (SR-

FoM) and Multiband Contrast Metrics (MCM), now 

complement MRTD. Intelligent thermal systems are thus 

evaluated through task-based metrics, MNRC, and AI-driven 

performance models, emphasising actionable insight over 
static resolution thresholds. 

 

 
Fig 6 Integration with Digital Twin  Technology & Emerging 

Performance Metrics 

IX. CHALLENGES IN STANDARDIZATION AND 

CROSS-PLATFORM EVALUATION 

 

 MRTD Standardization, AI Benchmarking & Testing 

Protocols 

Despite the progress, a universal framework for MRTD 

across various thermal platforms remains elusive. Variations 

in optics, processing, and detector technology complicate 
standardization. Future research must address: 

 

 Platform-independent MRTD assessment tools 

 Unified simulation environments 

 Cross-platform MRTD correlation metrics 

 

Efforts are underway within ISO and defence standards 

bodies to incorporate next-gen MRTD evaluation into future 

revisions of imaging standards. As thermal imaging systems 

evolve to include artificial intelligence (AI), machine learning 

(ML), and embedded smart processing, the need for rigorous 
Minimum Resolvable Temperature Difference (MRTD) 

standardization and benchmarking has become more urgent 

than ever. Traditional MRTD evaluation methods, developed 

for analog, human-interpreted systems, are increasingly 

insufficient in describing the performance of advanced 

thermal imagers that rely on digital interpretation, real-time 

processing, and autonomous decision-making. The 

integration of AI in these systems demands a rethinking of 

how MRTD is defined, measured, and standardized, 

particularly for systems operating in safety-critical 

environments such as defence, aerospace, search and rescue, 
and autonomous vehicles. Historically, MRTD testing was 

conducted using four-bar targets and human observers under 

controlled laboratory conditions. The observer’s ability to 

resolve targets of known spatial frequency at varying 

temperature contrasts was recorded, resulting in an MRTD 

curve that characterized system performance. However, this 

method is both subjective and labour-intensive. It also fails to 

capture the nuances of digital image enhancement, machine 

interpretation, or multispectral fusion—all of which can 

influence system-level thermal discrimination in modern 

applications. To address this, new standardization protocols 

are being developed and refined by organizations such as the 
International Electrotechnical Commission (IEC), National 

Institute of Standards and Technology (NIST), and various 

defence research laboratories. These standards seek to replace 

observer-dependent tests with objective, algorithm-based 

assessments. For example, the IEC 62676-5 and MIL-STD-

810 protocols incorporate digital image analysis techniques 

to determine MRTD more consistently. Automated MRTD 

assessment using modulation transfer functions (MTFs), edge 

detection, contrast-to-noise ratio (CNR), and scene-based 

thermal differentiation is becoming the norm. Furthermore, 

AI benchmarking has emerged as a complementary 
requirement. As many thermal imaging systems now rely on 

AI models for detection, classification, and tracking, 

evaluating the AI’s contribution to MRTD performance is 

essential. This involves testing not just the hardware (optics, 

sensors) but also the software stack, including pre-processing 

algorithms, neural networks, and post-processing engines. 

Benchmarks now consider how well an AI model can detect 

subtle thermal anomalies, classify materials based on 
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emissivity, or maintain detection under varying 

environmental noise. These AI-enhanced capabilities can 

significantly reduce the functional MRTD even if the 

hardware specifications remain unchanged. Testing protocols 

are also expanding to include scene diversity, motion blur 

effects, cluttered backgrounds, variable emissivity, and 

environmental dynamics like wind, humidity, and solar 

reflections. In real-world applications, thermal imagers rarely 
operate under ideal lab conditions. Thus, dynamic MRTD 

testing—using time-varying targets and scenarios—is 

becoming essential to reflect operational truth. Additionally, 

real-time diagnostics and feedback loops are being tested as 

part of system certification, especially in defence-grade 

systems where adaptive calibration and fault tolerance are 

mandatory. Another dimension is interoperability 

benchmarking. As thermal sensors are increasingly integrated 

into sensor fusion systems alongside LIDAR, RADAR, and 

visible-spectrum cameras, MRTD must be contextualized in 

a multisensory data framework. Standards now look at how 
MRTD impacts data fusion outcomes, whether AI algorithms 

can maintain target tracking consistency, and how thermal 

data integrates into broader situational awareness systems. 

Moreover, simulated environments and digital twins are 

being used to evaluate MRTD performance across 

hypothetical scenarios before deployment. This allows for 

controlled stress-testing of imaging systems against AI threats 

(e.g., spoofing), sensor degradation, and cyber-physical 

interactions that would otherwise be impractical or dangerous 

to test in the field. The standardization of MRTD in the era of 

AI-driven imaging demands a multifaceted approach that 

includes algorithmic assessment, real-time system feedback, 
and operational relevance. 

 

X. LATEST TRENDS AND RESEARCH IN 

MRTD OPTIMISATION 

 

Minimum Resolvable Temperature Difference (MRTD) 

remains a critical parameter for evaluating the thermal 

resolution of infrared imaging systems. As of 2025, 

substantial advancements in measurement techniques and 

thermal sensor technologies are enhancing the accuracy, 

consistency, and operational relevance of MRTD across a 
wide range of domains, including defence, environmental 

monitoring, and industrial diagnostics. Historically, MRTD 

assessments relied on subjective visual evaluations by human 

observers, leading to inconsistency and reduced repeatability. 

Recent developments have introduced objective, algorithm-

driven approaches—most notably the use of Adaptive Neuro-

Fuzzy Inference Systems (ANFIS). This computational 

model integrates neural networks with fuzzy logic to emulate 

human visual perception, offering enhanced precision and 

eliminating operator bias. In parallel, performance 

assessments of infrared sensors have become more granular. 

Comparative analyses of infrared thermal detectors (ITDs) 
and infrared photonic detectors (IPDs) operating across 

different spectral bands have shown that ITDs provide 

superior MRTD performance in the mid-wave infrared 

(MWIR) region, whereas IPDs are more effective in the long-

wave infrared (LWIR) range. Furthermore, MRTD values are 

influenced by spatial frequency and ambient temperature; 

specifically, MRTD tends to increase with both parameters, 

highlighting the need for environment-specific system 

calibration. Technological convergence with Artificial 

Intelligence (AI) and the Internet of Things (IoT) is further 

revolutionizing the domain. AI-enhanced thermal imaging 

systems can autonomously detect anomalies, adapt imaging 

parameters in real-time, and extract meaningful features from 

complex thermal environments. IoT integration enables 

remote diagnostics and continuous thermal data streaming, 
enhancing the utility of MRTD measurements in industrial 

asset monitoring and predictive maintenance. Advancements 

in detector hardware are also notable. While cooled infrared 

detectors continue to offer superior sensitivity and lower 

MRTD values, recent innovations in cryogenic 

miniaturization and power efficiency are making them more 

viable for compact platforms. Uncooled detectors, on the 

other hand, have seen improvements in thermal stability and 

noise reduction, making them increasingly suitable for 

portable and tactical systems. The adoption of multispectral 

and hyperspectral imaging systems, integrating thermal, 
visible, and ultraviolet bands, is extending MRTD 

applications to domains such as precision agriculture, 

environmental surveillance, and biomedical diagnostics. 

These systems can discern subtle differences in emissivity 

and material composition, thereby enhancing scene 

interpretation and target recognition. On the national stage, 

countries like India are deploying MRTD-reliant technologies 

for strategic and civilian purposes. The Indian Space 

Research Organisation’s Electro Optical-Infrared (EOIR) 

payload aboard the EOS-08 satellite supports high-resolution 

thermal imaging for resource mapping, wildfire detection, 

and urban planning. Simultaneously, the Indian Army’s 
integration of advanced Hand-Held Thermal Imagers 

(HHTIs) strengthens its surveillance capabilities, particularly 

in low-visibility environments. To ensure consistency in 

system evaluation, the ASTM E1213-14(2022) standard 

continues to provide a robust framework for MRTD 

measurement. This standard outline uniform procedures for 

determining system performance under controlled conditions, 

thereby supporting cross-platform benchmarking and quality 

assurance. 
 

XI. CONCLUSION AND FUTURE OUTLOOK 
 

The future of Minimum Resolvable Temperature 

Difference (MRTD) research is set to redefine the landscape 

of thermal imaging, with a strong shift towards adaptive, 

intelligent, and highly integrated systems. Demands from 

sectors such as defence, aerospace, healthcare, and industry 

are driving the need for ultra-low MRTD values to support 

reliable detection, recognition, and identification in complex 

environments. At the core of this advancement lies the 

convergence of quantum sensing, machine learning 

algorithms, and embedded diagnostic frameworks, 

collectively enabling real-time adaptability, fault detection, 
and performance optimisation. Quantum sensors, harnessing 

quantum mechanical principles, offer significant 

improvements in sensitivity and resolution, making them 

ideal for operation in noise-prone or low-signal scenarios. 

Combined with machine learning, these systems can self-

optimise, adjusting resolution, reducing noise, and processing 

data contextually. This marks a transition from static to 
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dynamic MRTD evaluation, where performance continuously 

adapts based on environmental and operational parameters. 

Despite these advancements, challenges persist. Standardised 

testing protocols must evolve to accommodate AI-driven and 

quantum-enhanced systems. Moreover, achieving 

environmental robustness and miniaturisation without 

performance compromise will require continued innovation 

in materials, embedded technologies, and algorithm design. 
However, for miniaturization, the adoption of an indigenous 

solution will greatly strengthen field-level maintenance and 

operational readiness. By providing technicians with a 

simple, lightweight, and portable test station, universally 

compatible across a wide spectrum of thermal imaging 

devices, it eliminates the need for multiple, device-specific 

test setups. This kind of standardisation will not only enhance 

the testing efficiency but also ensure faster fault isolation, 

reduced downtime, and improved sustainability of critical 

electro-optical assets in forward areas. In addition, the 

compact and modular design reduces logistic burden, eases 
transportation, and simplifies training requirements for 

operators at all levels. Looking ahead, the solution offers a 

scalable framework that can be seamlessly adapted to 

accommodate future generations of sensors and imaging 

systems, thereby ensuring long-term relevance. Thus, it 

represents not only a step towards immediate self-reliance but 

also an investment in the sustained technological autonomy 

of defence forces. Looking ahead, MRTD will no longer 

function merely as a metric but as an embedded, adaptive 

capability—integral to the next generation of smart, high-

performance thermal imaging platforms. 
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