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Abstract: The rapid rise of Generative AI (GenAI) technologies has brought transformative capabilities across industries 

but has also raised serious concerns about their environmental sustainability. As the computational demands of training and 

deploying large-scale AI models continue to escalate, so too does their carbon footprint. This paper adopts a comprehensive 

Life Cycle Assessment (LCA) approach to evaluate the environmental impact of GenAI models throughout their lifecycle—

from hardware manufacturing and data center infrastructure to model training, deployment, and inference. We analyze 

and compare the energy efficiency and performance of five widely adopted GenAI models: GPT-3, ChatGPT (GPT-4), 

LLaMA 2, PaLM 2, and DistilBERT. Emissions are modeled using publicly available energy benchmarks, ML CO₂ 

calculators, and estimation methodologies where direct data is unavailable. Beyond analysis, we introduce a Green AI 

Benchmarking Framework that integrates sustainability metrics, such as energy consumption and carbon emissions, into 

model evaluation standards, alongside traditional performance metrics. Our findings aim to guide researchers, developers, 

and policymakers toward more energy-conscious and environmentally responsible AI development practices. 
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I. INTRODUCTION 

 

The remarkable growth of Generative Artificial 

Intelligence (GenAI) in recent years has revolutionized 

various sectors, from education and healthcare to finance and 

entertainment. With the advent of models like GPT-4, 
Claude, Gemini, and PaLM, machines have demonstrated 

remarkable capabilities in understanding and producing 

human-like language, code, images, and even scientific 

reasoning. While these breakthroughs are celebrated for their 

performance and innovation, they also raise an urgent and 

growing concern: the environmental cost of GenAI 

technologies. As these models scale up in size, complexity, 

and deployment, their energy consumption and associated 

carbon emissions have grown substantially, warranting close 

scrutiny from both the AI community and policymakers. 

 

Unlike traditional software systems, GenAI models 
undergo extensive pre-training on massive datasets and are 

fine-tuned across numerous hardware clusters using 

thousands of GPUs. These processes demand vast amounts of 

electricity, contribute significantly to global CO₂ emissions, 

and put pressure on the sustainability goals of data centers 

and cloud infrastructure providers. For example, GPT-3 

alone, with 175 billion parameters, is estimated to have 

consumed over 1,287 MWh of electricity and produced more 

than 550 metric tons of CO₂ , equivalent to the lifetime 

emissions of five average U.S. cars [1]. Fig. 1 shows the 
relationship between the size of the model and the amount of 

training emissions in tons. With the widespread integration of 

these models into consumer applications—such as virtual 

assistants, search engines, and productivity tools—daily 

inference costs compound the environmental impact 

significantly. 

 

Despite increasing awareness, environmental 

sustainability remains underrepresented in mainstream AI 

benchmarking. Evaluation criteria still prioritize performance 

metrics such as accuracy, F1-score, and BLEU, while 

ignoring energy usage, carbon footprint, and hardware 
efficiency. This imbalance leads to what some researchers 

term an "AI environmental blind spot"—where progress in 

performance is pursued at the expense of planetary health 

[2][3]. The AI community has started to voice concerns about 
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this trajectory, urging the integration of Green AI principles 

into model development and deployment [4]. 
 

Green AI refers to AI research and development 

practices that aim to reduce energy consumption and carbon 

emissions while maintaining acceptable performance levels 

[5]. The concept is not just theoretical; practical frameworks 

and tools such as the Machine Learning Emissions 

Calculator, the Carbontracker, and CodeCarbon have 

emerged to assist researchers and engineers in estimating the 

carbon footprint of their models [6][7]. Despite offering a 

foundation for evaluation, these tools are not yet standardized 

and are inconsistently adopted across academic and industrial 
contexts. There is, therefore, an urgent need for a unified 

benchmarking framework that incorporates sustainability 

metrics as first-class evaluation criteria alongside accuracy, 

latency, and scalability. 

One of the key challenges in quantifying the 

environmental cost of GenAI is the lack of transparency and 

standardized reporting. Model developers rarely disclose 

energy usage during training or inference phases, and when 

such data is provided, it often lacks methodological 

consistency [8]. Furthermore, differences in hardware 

configurations, cooling systems, power usage effectiveness 

(PUE) of data centers, and geographic energy sources 
(renewable vs. non-renewable) add complexity to any 

comparative analysis. This lack of standardization not only 

hampers fair evaluation but also inhibits accountability and 

informed decision-making by model consumers, researchers, 

and regulators alike. 

 

 
Fig. 1: Relationship Between Model Size and Training 

Emissions 

 

Another important aspect that warrants attention is 

energy efficiency—defined as the trade-off between model 

performance and energy consumed per operation. Recent 

studies show that smaller, more optimized models, such as 

DistilBERT or ALBERT, can achieve comparable 
performance to larger models while consuming only a 

fraction of the energy [9]. Yet, they receive far less attention 

in mainstream discourse and deployment. Encouraging the 

adoption of such models through improved benchmarking 

visibility can have a meaningful impact on reducing the 

overall carbon footprint of the AI ecosystem. 

 

Moreover, the global AI infrastructure is heavily 

dependent on cloud providers like AWS, Google Cloud, and 
Microsoft Azure, who operate data centers at scale. These 

providers have begun to disclose some environmental 

metrics, such as PUE and carbon-free energy (CFE) scores, 

but the granularity and verifiability of such data remain 

limited [10]. Without stronger incentives or regulatory 

requirements for reporting, environmental data related to AI 

workloads is unlikely to become publicly accessible or 

reliable in the near term. 

 

In this context, the current paper makes two key 

contributions. First, it performs a comparative analysis of five 
widely used GenAI models—GPT-3, ChatGPT (GPT-4), 

LLaMA 2, PaLM 2, and DistilBERT—focusing on their 

estimated energy consumption and emissions during training 

and inference. Second, and more importantly, it introduces a 

novel Green AI Benchmarking Framework that incorporates 

new evaluation dimensions such as CO₂ per training run, CO₂ 

per inference, energy efficiency per accuracy unit, eco-

scores, and PUE-normalized emissions. This framework aims 

to help practitioners make more environmentally conscious 

decisions without sacrificing performance or scalability. 

 

By encouraging transparency and integrating green 
metrics into model selection and evaluation processes, this 

research hopes to catalyze a shift toward more sustainable AI 

development practices. It calls upon academia, industry, and 

regulators to move beyond accuracy obsession and embrace 

environmental responsibility as a core pillar of AI research 

and deployment. The introduction of such a framework is 

timely and necessary, especially as GenAI models become 

increasingly embedded into the fabric of modern digital 

infrastructure. 

 

II. LITERATURE REVIEW 
 

Strubell et al. (2019) analyze the environmental and 

economic costs of training large NLP models like BERT. 

Their study quantifies emissions and GPU hours and 

highlights the extreme energy demands of deep learning. 

They suggest energy-saving strategies like model pruning and 

early stopping. This paper laid the foundation for green AI 

discussions and is frequently cited for its influential data-

driven recommendations. 

 

Henderson et al. (2020) advocate for standardized 
reporting practices in ML research, proposing inclusion of 

hardware specs, energy use, and emission data in 

publications. Their framework introduced the idea of energy-

efficiency benchmarks and transparency tools. By promoting 

reproducibility and environmental accountability, this paper 

remains a cornerstone in energy-aware ML practices and 

forms the backbone of several recent emission reporting 

tools. 

 

Roy Schwartz et al. (2020) draw a distinction between 

"Red AI" (focused solely on accuracy) and "Green AI" 

(prioritizing resource-efficiency). The paper encourages the 
use of FLOPs and energy metrics in benchmarks and sets a 

precedent for ecological awareness in AI development. Their 
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arguments have shaped discussions on sustainable AI 

practices, influencing both academia and industry toward 
greener innovation. 

 

In this study, Lacoste et al. (2019) introduces the ML 

CO₂ Impact calculator, a widely used tool for estimating 

emissions based on geographic location, hardware, and 

training duration. They emphasize that carbon impact varies 

widely by location due to differing electricity sources. Their 

practical tool has contributed significantly to reproducibility 

and serves as a reference for our estimation methodologies in 

the proposed benchmarking framework.  

 
This study, Emily Bender et al. (2021) offer a critical 

view of the scale-centric AI research culture. The paper 

discusses ethical, environmental, and social concerns arising 

from massive language models. Specifically, it emphasizes 

the need to account for carbon costs, question model size 

justifications, and improve documentation. It contributes to 

our understanding of the trade-offs between accuracy, 

accessibility, and environmental sustainability. In another 

study, Castaño et al. (2023) analyze over 1,400 models from 

Hugging Face, focusing on carbon footprint disclosure rates. 

They find a general lack of emissions transparency, with very 

few models reporting environmental impact metrics. The 
paper recommends platform-wide emission reporting 

standards. Their findings guide the transparency component 

of our proposed benchmarking framework. 

 

In the recent study, Jegham et al. (2025), benchmark 

environmental costs of LLM inference across 30 commercial 

deployments. They incorporate factors like electricity grid 

emissions, cooling infrastructure, and statistical variance 

across geographic zones. The study finds vast disparities 

between models in terms of energy usage and environmental 

impact, providing a modern reference for inference-focused 
sustainability assessments. 

 

Schneider et al. (2025) perform a complete life cycle 

assessment (LCA) of AI chips like TPUs, including 

manufacturing, deployment, and disposal. They introduce the 

Compute Carbon Intensity (CCI) metric to assess the carbon 

cost per computational performance. Their insights help 

contextualize hardware-level trade-offs, making their work 

integral to the hardware-awareness in our benchmarking 

model. 

 
Wu et al. (2024) present a multi-dimensional 

benchmarking framework that considers energy, water, and 

emissions across model lifecycle stages. Their work proposes 

a unified eco-metric for large AI systems, tested on real-

world industrial deployments. The authors also propose 

reward-based incentives for sustainable model design, 

reinforcing the need for regulatory frameworks to accompany 

green AI strategies. 

 

In this study, Zhang et al. (2023) conduct a socio-

environmental study that reveals how AI-related emissions 

disproportionately impact the Global South. The paper offers 
a geographical breakdown of model deployment and related 

carbon costs, arguing for fairness-oriented emissions 

accountability. This geographic perspective supports our 

benchmarking framework's emphasis on regional electricity 
mix and data center efficiency factors. In another study, Qian 

et al. (2022) introduce an energy-aware optimization protocol 

that fine-tunes pre-trained models with minimal retraining 

cycles and dynamic batch resizing. The study demonstrates 

that energy use can be reduced by over 30% without 

sacrificing model accuracy. Their work aligns with our 

advocacy for energy-efficient training and provides a 

practical optimization avenue within the Green AI ecosystem. 

 

Lee et al. (2024) offer a comprehensive review of 

software-related emissions beyond just training. They include 
aspects like data loading, inference bottlenecks, and model 

updates during deployment. Their insights reinforce the 

importance of measuring AI's full lifecycle footprint and 

support the use of lifecycle-based metrics in our 

benchmarking framework. 

 

III. RESEARCH OBJECTIVES 

 

This Paper Aims to: 

  Apply Life Cycle Assessment (LCA) to GenAI models. 

 Quantify and compare the carbon emissions of major 
models. 

 Propose green benchmarking standards for GenAI 

development and deployment. 

 Evaluate model efficiency using both accuracy and        

energy metrics. 

 

IV. METHODOLOGY: LIFE CYCLE 

ASSESSMENT (LCA) 
 

To assess the environmental impact of generative AI 

models, we adopted a Life Cycle Assessment (LCA) 

framework, widely used in sustainability studies to evaluate 
the full range of environmental effects associated with a 

product or process. In the context of GenAI, our LCA 

methodology captures four major stages: model training, 

inference and deployment, hardware production and disposal, 

and data center infrastructure. 

 

A.  Model Training 

We estimated the energy consumption during training 

using publicly reported training parameters (e.g., GPU hours, 

batch size, total FLOPs) and emission calculators such as ML 

CO2 Impact Calculator and CodeCarbon. Where exact data 
was unavailable, we used approximation methods based on 

model size and architecture type. For models like GPT-3 and 

PaLM, we also referenced energy benchmarks from 

published papers and industry whitepapers. 

 

B.  Inference and Deployment 

The inference phase was modeled based on real-world 

usage patterns, such as the average number of queries per day 

and model size. We considered power requirements for GPUs 

and CPUs during inference as well as energy costs of data 

transmission and API calls. Edge inference (on-device) and 

cloud inference were separately analyzed. 
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C. Hardware Lifecycle 

We included emissions from the manufacturing, 
transportation, and end-of-life disposal of hardware 

components such as GPUs, CPUs, and cooling systems. 

Lifecycle data was collected from sources like NVIDIA’s 

environmental disclosures and academic studies on 

semiconductor manufacturing footprints. 

 

D. Data Center Energy and Cooling 

Cooling overhead was modeled using Power Usage 

Effectiveness (PUE) values, typically ranging from 1.1 to 2.0 

depending on data center efficiency and climate zone. We 

also accounted for regional variations in electricity grids, 
differentiating between renewable-heavy and fossil-fuel-

dominant regions. 

 

This methodology ensures that the entire carbon 

footprint of GenAI models—rather than just training 

emissions—is captured and compared across different 

architectures. Our approach emphasizes transparency, 

reproducibility, and relevance to policymakers and 

developers striving for sustainable AI systems. 

 

V. TOOLS AND DATA SOURCE 

 
To evaluate the environmental footprint of generative 

AI models, we utilized a combination of peer-reviewed 

datasets, emission estimation frameworks, and publicly 

disclosed model information. Energy consumption and 

carbon emission estimates were derived using reputable tools 

such as the ML CO2 Impact Calculator, CodeCarbon, and the 

Hugging Face Energy Efficiency Benchmark. These 

platforms provide standardized methods to approximate 

carbon footprints based on model size, GPU/TPU usage, 

hardware specifications, geographic electricity grids, and 

training/inference duration. Where direct measurements were 
not available, we referenced estimations published by leading 

research institutions, including data from Google’s and 

OpenAI’s whitepapers. For lifecycle assessment components, 

such as hardware manufacturing emissions and disposal 

impacts, we consulted sustainability reports from NVIDIA 

and LCA studies from IEEE and ACM publications. Power 

Usage Effectiveness (PUE) values and data center cooling 

loads were sourced from Uptime Institute, Greenpeace 

energy audits, and Google Data Center  

reports. This triangulated, evidence-based approach ensures  

transparency, reproducibility, and alignment with current best 
practices in green AI research. 

 

VI. MODEL COMPARISON 

 

In order to assess the sustainability and performance 

trade-offs among leading generative AI models, we conducted 

a comparative evaluation of five widely adopted architectures: 

GPT-3, ChatGPT (GPT-4), LLaMA 2, PaLM 2, and 

DistilBERT. These models were selected based on their 

widespread deployment, open access to performance data, and 

diversity in design objectives. Our analysis focuses on key 

aspects relevant to Green AI: total carbon emissions during 
training, energy efficiency during usage, model accuracy 

(using the MMLU benchmark), and an aggregated Eco-Score 

representing environmental performance. This comparison is 

shown in Table 1. 
 

GPT-3, developed by OpenAI, is a foundational 

generative model with 175 billion parameters. While it 

marked a significant advancement in natural language 

generation, its environmental cost is substantial. Training 

GPT-3 consumed an estimated 552 tons of CO₂e[23]. Despite 

its powerful output, it exhibits low energy efficiency relative 

to its size, and scores a modest 3 out of 10 on our Eco-Score 

scale. 

 

ChatGPT (GPT-4), an advancement over GPT-3, is 
estimated to have significantly higher emissions [24]. While it 

delivers notably higher accuracy—around 86.4% on the 

MMLU benchmark—its training process is estimated to 

produce over 1,200 tons of CO₂e. The model uses improved 

training infrastructure and optimization techniques, leading to 

slightly better energy efficiency than GPT-3. However, the 

sheer scale of GPT-4 results in only a moderate Eco-Score of 

4. 

 

Meta’s LLaMA 2 model offers a more balanced trade-

off between accuracy and sustainability[25]. At 65 billion 

parameters, it achieves around 75% accuracy on MMLU with 
an estimated 120 tons of CO₂e emissions during training. With 

moderate energy efficiency, LLaMA 2 earns a respectable 

Eco-Score of 6, making it one of the more environmentally 

efficient large-scale models. 

 

Google’s PaLM 2, consisting of 340 billion parameters, 

offers strong accuracy with moderate emissions [26]. It 

delivers high performance (around 84% accuracy) but at a cost 

of approximately 780 tons of CO₂e for training. While PaLM 

2 benefits from energy-efficient TPU-based infrastructure, its 

overall environmental performance remains moderate, and it 
receives an Eco-Score of 5. 

 

DistilBERT stands out for its environmental efficiency. 

As a distilled and smaller version of BERT, it has just 66 

million parameters but still performs competitively, achieving 

around 63% on MMLU[27]. Its low resource requirements 

result in only 15 tons of CO₂e during training. With high 

energy efficiency and strong suitability for low-power 

deployments, it earns the highest Eco-Score in our 

comparison—8 out of 10. 

 
This comparison underscores that high performance 

often comes with increased environmental costs. It also 

highlights the potential for smaller or optimized models to  
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 play a critical role in sustainable AI development, 

particularly for applications that do not require state-of-the-art 

results. 

 

VII. DISCUSSION 

 

The findings of this study highlight the urgent need for 

energy-efficient practices in the development and 

deployment of generative AI models. Our Life Cycle 

Assessment (LCA) revealed that the training phase remains 

the dominant contributor to carbon emissions, especially in 

transformer-based models like GPT-3 and PaLM 2, which 

rely on tens of thousands of GPU hours. In contrast, more 

lightweight models such as DistilBERT and LLaMA 2 

exhibit notably lower energy footprints while maintaining 
competitive performance on many downstream tasks. 

 

Another key insight is the disproportionate energy cost 

of inference in production environments, especially when 

deployed at scale. Even after training is completed, running 

millions of inferences daily can result in substantial 

cumulative emissions. Furthermore, the manufacturing and 

disposal of specialized hardware (e.g., GPUs, TPUs) adds to 

the long-term environmental burden, yet remains largely 

overlooked in traditional AI evaluation benchmarks. 

 

We also observed that data center cooling—particularly 
in regions with poor energy grids—adds a non-negligible 

indirect carbon cost. Thus, regional deployment strategies, 

model distillation, and low-power AI hardware (like edge 

TPUs) should be prioritized for sustainable scaling. 

Integrating green metrics such as carbon cost per 1,000 

tokens or energy-per-FLOP into AI evaluation protocols 

would promote accountability and drive innovation toward 

climate-conscious AI development. 

 

VIII. PROPOSED GREEN AI BENCHMARKING 

FRAMEWORK 

 

To establish environmentally responsible standards for 

AI development, we propose a comprehensive Green AI 

Benchmarking Framework. This framework addresses the 

current gap in sustainability metrics within AI performance 

evaluation by introducing new criteria that account for 

environmental impact. It is designed to guide researchers, 

developers, and policymakers in assessing AI systems not just 

by accuracy and speed, but also by their carbon and energy 

footprints. Below are the key components of the proposed 

framework, each followed by a concise explanation: 

 

A. Key Components of the Framework 
 

➢ Carbon and Energy Reporting 

Every generative AI model should report energy usage and  

estimated carbon emissions throughout its lifecycle—

including training, fine-tuning, and inference. This 

transparency allows researchers and developers to make 
environmentally responsible decisions and helps institutions 

assess the sustainability of their AI development practices. 

 

➢ Efficiency-Performance Tradeoff 

Beyond just accuracy or model size, evaluations must 

consider how much energy is consumed to achieve a given 
level of performance. Comparing models on an “accuracy-

per-kWh” basis encourages the adoption of more 

computationally efficient architectures without 

compromising significantly on effectiveness, making energy 

efficiency a standard performance indicator. 

 

➢ Lifecycle Assessment Metrics 

AI sustainability evaluations should not stop at training 

or inference. A comprehensive lifecycle assessment (LCA) 

includes emissions from hardware production, infrastructure 

maintenance, cooling systems, and even end-of-life hardware 

disposal. Incorporating these stages allows for a more holistic 

and realistic picture of a model’s environmental footprint. 

 

➢ Sustainability Leaderboard 

A publicly accessible leaderboard should be introduced 

that ranks GenAI models not only by accuracy or speed but 

also by environmental metrics such as emissions per task and 

energy use. This benchmark would drive competition toward 

greener innovation and inform decision-makers with easy-to-

compare metrics. 

 

➢ Green AI Labels 

Models meeting defined sustainability standards—such 

as specific CO₂ thresholds, efficiency benchmarks, or 

renewable energy usage—should be granted a “Green AI” 

certification. These labels help users and developers easily 

identify environmentally responsible models and promote 
accountability in AI research and deployment. 

 

 

Model Parameters (B) 
Accuracy(Avgerage 

Benchmark) 

Training 

Emissions 

(tCO2e) 

Inference 

Energy(kWh/1K) 
Eco-Score(0-10) 

GPT-3 175 70% ~552 ~1.3 3 

GPT-4 ~500* 86% ~1300* ~1.3 4 

LLaMA 2 65 75% ~539 ~0.8 6 

PaLM 2 ~340 84% ~780 ~1.1 5 

DistilBERT 0.66 63% ~15 ~0.2 8 

Table 1: Model Comparison 

Estimated. Exact figures fir GPT-4 are not disclosed. 
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➢ Policy and Regulatory Alignment 

The framework must be adaptable to international 

environmental standards and future regulatory requirements. 

As global bodies introduce new sustainability regulations in 

tech, aligning benchmark methodologies with them ensures 

that the framework remains relevant, useful, and easily 

adoptable by industry and academic institutions alike. 

 

➢ Public Emission Disclosure Tools 

The use of open-access tools such as ML CO₂ 

calculators, LCA estimators, and emissions databases should 

be encouraged or mandated. These tools allow researchers to 

estimate and report environmental impacts with transparency, 
especially when exact usage data is unavailable, thus 

maintaining accountability in sustainability claims. 

 

 

➢ Model Design Guidelines 

 The framework should include best practices for 
energy-efficient AI model architecture. This includes 

encouraging use of model distillation, pruning, quantization, 

and sparse attention mechanisms—all of which reduce 

computational overhead and energy needs while preserving 

acceptable levels of performance for real-world applications. 

 

This structured framework not only facilitates a 

transparent and unified way to assess the environmental 

impact of GenAI models but also aims to influence future 

design and deployment strategies. 

 

IX. BENCHMARKING METRICS FOR 

EVALUATION 

 

To put the proposed Green AI Benchmarking 

Framework into practice, we have outlined a set of clear, 

quantifiable metrics for comparing AI models in terms of 

their energy use and carbon emissions, as shown in Table 2. 

These metrics offer a practical way to measure 

environmental impact, providing a common language for 

researchers, developers, and policymakers who want to 

balance technical performance with sustainability goals. 

 
Incorporating these metrics into standard benchmarking 

methods shifts the focus from purely accuracy-driven 

evaluations toward a more balanced perspective—one that 

values both computational excellence and ecological 

responsibility. This change is timely, given the growing 

global concern over the environmental cost of large-scale AI 

systems. 

The framework also supports international 

sustainability initiatives, particularly the United Nations 
Sustainable Development Goals, including Goal 7: 

Affordable and Clean Energy, and Goal 13: Climate Action 

[28]. By factoring in aspects like data center efficiency 

through PUE normalization and summarizing environmental 

performance into a single Eco-Score, it ensures fair, 

transparent, and easy-to-understand comparisons across 

different AI models. 

 

If widely adopted, this approach could influence how 

AI is designed, deployed, and evaluated—encouraging 

innovation that is mindful of resource consumption. In doing 
so, it helps pave the way for AI systems that are not only 

powerful and accurate but also sustainable and aligned with 

broader climate action efforts. Ultimately, the framework sets 

a precedent for responsible AI development, fostering 

solutions that advance both technological progress and 

environmental stewardship. 

 

X. CONCLUSION 
 

As generative AI systems grow in complexity and 

prevalence, their environmental impact can no longer be 

overlooked. The energy-intensive processes associated with 
training, deploying, and maintaining these models are 

significant contributors to carbon emissions, and their 

continued expansion poses long-term sustainability 

challenges. This paper presents a comprehensive evaluation 

of five widely used generative AI models through a Life 

Cycle Assessment (LCA) lens, emphasizing the need to move 

beyond performance-centric evaluations and toward 

environmentally conscious AI development. 

 

Our analysis highlights the discrepancies in energy 

efficiency and carbon footprints among popular models such 
as GPT-3, GPT-4, LLaMA 2, PaLM 2, and DistilBERT. 

These discrepancies reveal that while high performance is 

achievable, it often comes at the cost of massive energy 

consumption. Without a structured framework to measure 

and mitigate these impacts, the growth of AI may come at an 

unsustainable environmental price. We therefore proposed a 

Green AI Benchmarking Framework that introduces carbon 

and energy reporting, lifecycle metrics, model transparency 

tools, and sustainability-oriented leaderboards into 

mainstream AI evaluation. 

 
 

 

Metric Description 

CO2e per Training Total carbon emissions (in tons of CO₂ equivalent) generated during the training phase. 

CO₂e per Inference Emissions produced per 1,000 inference executions to represent scalability impacts. 

Energy Efficiency Ratio of model accuracy or performance output per kilowatt-hour of energy consumed. 

Eco-Score(0-10) Composite score combining emissions, hardware sustainability, and cooling efficiency. 

PUE Normalization Adjusts emission scores based on the Power Usage Effectiveness (PUE) of the data center used. 

Table 2: Benchmarking Metrics 
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This framework is not just a technical 

recommendation—it is a call for systemic change in how AI 
research and development are conducted. By incorporating 

tools like ML CO₂ calculators, aligning with global 

environmental policies, and certifying energy-efficient 

models through "Green AI" labels, the community can foster 

accountability and transparency. The proposed benchmarks 

encourage researchers to design models that are not only 

powerful but also environmentally efficient, setting new 

standards for ethical and responsible innovation. 

 

Ultimately, this paper contributes to a growing 

movement toward sustainable AI, emphasizing that 
technological progress should not come at the expense of 

ecological well-being. We urge developers, institutions, and 

policymakers to adopt these recommendations and 

collaborate on creating a more carbon-conscious future for 

artificial intelligence. 
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