
Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1095

An Evaluation Framework for Anti-Forensic

Encryption Tools Through Software Reverse

Engineering Methods

Zakariyya Hassan Abdullahi1; Zainab Suleiman Abdullahi2; Kabiru Bashir3

1,2 Department of Computer Engineering, Hussaini Adamu Federal Polytechnic Kazaure, Jigawa State

Nigeria
3Department of Mechanical Engineering, School of Technology, Kano State Polytechnic Nigeria

Publication Date: 2025/08/25

Abstract: The widespread adoption of encryption technologies has raised concerns about the protection and vulnerability

of digital data. Protocol reverse engineering (PRE) is a critical methodology for evaluating and validating encryption

implementations. It involves analyzing network traffic, message logging, and model checking processes. The key security

properties of encryption include confidentiality, integrity, availability, and non-repudiation. However, the dual-use nature

of encryption presents challenges for digital forensics and law enforcement investigations. Malicious actors can exploit

encryption to conceal criminal activities and obstruct justice. Digital investigators and forensic specialists must develop

expertise in specialized decryption tools, steganographic detection methods, and advanced analytical techniques to uncover

hidden or obfuscated data. Cryptographic service implementations vary significantly in performance characteristics and

security effectiveness, with key size, algorithm type, encryption rounds, algorithm complexity, and data size influencing

performance.

Keywords: Reverse Engineering, Encryption, Protocol.

How to Cite: Zakariyya Hassan Abdullahi; Zainab Suleiman Abdullahi; Kabiru Bashir(2025), An Evaluation Framework for

Anti-Forensic Encryption Tools Through Software Reverse Engineering Methods. International Journal of Innovative

Science and Research Technology, 10(8), 1095-1106. https://doi.org/10.38124/ijisrt/25aug411

I. INTRODUCTION

In today’s digital age, nearly every aspect of our lives

is influenced by digital technology and supported by digital

data. Numerical data plays a significant role across various

fields, highlighting the widespread integration of

technology. Individuals, businesses, and governments rely

on digital data for many purposes, including investigating
cybercrime, terrorism, and common criminal activities,

where such data can offer critical insights. The growth of

digital forensics has played a key role in enabling this

expanded use of digital information [1][2]. The presence of

digital forensics tools has also acted as a deterrent to

hackers, threat actors, and privacy-focused individuals,

prompting the development of anti-forensics tools aimed at

undermining the effectiveness of forensic tools (FT) in

retrieving valuable and relevant information. Computer

Forensics Tools (CFT) and Mobile Forensics Tools (MFT)

support forensic examiners in extracting evidence from
digital devices.

Anti-forensics tools (AFT) and techniques are

employed to compromise the accessibility and usefulness of

digital evidence by altering, disrupting, or eliminating its

scientific reliability [3] [4] Based on their purpose and

application, anti-forensics tools (AFT) can take various

forms, such as artifact wiping. With technological

advancements, forensic professionals now use sophisticated

methods to conduct investigations more efficiently,

accurately, and decisively. However, cybercriminals are also

leveraging these same technological advancements to

develop advanced, customized techniques designed to
obstruct and mislead forensic investigations [5] While the

concept of "anti-forensics" is not new, it lacks a universally

accepted definition within engineering or academic

communities. In this context, the authors have proposed a

definition, suggesting that anti-forensics refers to efforts

aimed at negatively impacting the presence, amount, or

integrity of evidence from a crime scene, or at making the

examination and interpretation of that evidence difficult or

impossible [6] A digital forensics expert and investigator

defines anti-forensics (AF) as efforts to negatively influence

the nature, quantity, or quality of evidence from a crime
scene. However, those skilled in anti-forensic techniques

and tools often adopt a more critical perspective, describing

it as the use of scientific methods on digital media

specifically to eliminate or obscure information, preventing

it from being examined in a legal or judicial contex.[7].

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25aug411

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1096

Fig1 Classification of Anti-Forensics Techniques

II. ENCRYPTION

Data encryption functions as a security barrier that

blocks unauthorized individuals from accessing stored

information. This protective measure can be implemented at

various levels - securing single files, protecting databases,

safeguarding email communications, or encrypting complete

storage drives through the use of multiple cryptographic

algorithms.

In contemporary digital environments, encrypting

data has become a fundamental security requirement.

Electronic devices such as laptops, personal digital

assistants, USB flash drives, smartphones, and external hard

drives are prime targets for security breaches, as they store

valuable user information that attracts malicious actors.

According to research conducted by Intel Corporation in

2017, approximately half of all stolen laptop computers

lacked any form of encryption protection, leaving their

stored data completely exposed and accessible to thieves [8].

In the modern era, protecting data information has become a

vital concern for individuals across all sectors. People invest

substantial amounts of money—often reaching hundreds of

dollars—to safeguard their digital information as a necessity

for maintaining their competitive edge and business

viability. The unauthorized disclosure or breach of critical
data can result in devastating and irreversible consequences

that may be impossible to recover from [9]. Data

Information security is the most critical type of security-

more important than network security-since only securely

encrypted data can be safely transmitted.

Fig 2 Encryption

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1097

VeraCrypt is an open-source on-the-fly encryption (OTFE) software that offers full support for Windows XP and includes
features for plausible deniability. TrueCrypt version 1.0 was compatible with Windows 98/ME and Windows 2000/XP, but

starting with version 2.0a, support for Windows 98 and ME was discontinued [10]

Fig 3 VeraCrypt Software (sources https;//www.idrix.fr)

III. VALUE ADDED TO KNOWLEDGE

The article contributes to the strategy used by the

author to develop higher-level abstract representations of a

system. This involves accurately identifying subsystem

interfaces and pinpointing key components and their

interconnections within complex, multi-layered subsystem

structures. The method, rooted in software reverse

engineering principles, includes steps such as offline

analysis and the identification of modules and components.

Compared to automated approaches commonly used in

earlier research, this system-level technique typically

achieves a more effective decomposition of the system.

Offline code analysis proves to be a powerful tool, as it
provides a clear understanding of the program and facilitates

the targeted search for specific functions of interest.

IV. RELATED WORK

Software reverse engineering has long been employed

to analyze and comprehend the logic, architecture, and

design of code. Through reverse engineering an application,

its code structure can be uncovered and partially

reconstructed. Malware creators exploit this process to clone
apps by reusing code and repackaging them. These

malicious actors focus on such apps due to the open nature

of the Machine App Market and the insufficient security

testing carried out by developers, enabling the creation and

spread of mobile malware. This perspective is supported by

Gonzalez and colleagues [11]. Examine several offline and

online techniques for detecting repackaging by identifying

software similarities through different attributes and metrics

in detail . Including Lim et al.[12]. Protocol reverse

engineering (PRE) uses communication analysis to

approximate the definition of a protocol. Unlike reverse

engineering of executable program binaries, which focuses
on recovering source code or understanding a program’s

implementation, PRE aims to infer the program’s behavior.

However, PRE is not limited to communication analysis

alone and can also incorporate software reverse engineering

to gather communication details. Techniques for software

reverse engineering differ fundamentally from those used in

traffic analysis. Software reverse engineering requires

specialized tools, methods, and analytical processes, as well

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1098

as a certain level of expertise from the analyst. Additionally,
beyond PRE, the techniques used for entity analysis are also

well-established and widely applied[13]. By reverse

engineering a node's software implementation, entity

analysis is able to deduce the underlying protocol (e.g.,

[14]). To apply software control flow analysis and memory

introspection techniques, entity analysis requires access to

both the program and its execution environment. However,

acquiring the program or a suitable environment for its

execution is often not feasible, rendering entity analysis

methods unusable in such cases. In contrast, traffic trace

analysis remains a viable alternative when reverse
engineering the executable is not possible, as it focuses

solely on the observable communication between entities.

This form of analysis is non-intrusive and does not require

control over any of the entities involved, although it is

limited to the information that can be seen on the

communication channel. Rauch [12] In 2006, efforts to

automate protocol reverse engineering (PRE) were

discussed, highlighting steps to reduce the repetitive manual

work typically involved in the PRE process. However, the

tool showcased at Black Hat was never released publicly,

which hindered ongoing progress in the PRE field. As a

result, even more than a decade later, the standard PRE
process largely remains manual, despite the introduction of

various techniques offering partial automation. Stroulia,

Eleni and colleagues concentrated on program

comprehension, aiming to model the structure of software

by analyzing its COBOL and C source code. [15] Reverse

engineering generates higher-level abstractions and offers

architectural perspectives on the overall structure of

complex software systems [16]. Various methods have been

created to automate the evaluation of sources and code

snippets; however, many algorithms tend to overlook or

underestimate important characteristics of the source code.
To address this issue Diamantopoulos et al. [17]

Reverse engineering is not a recent concept. The idea

of reversing occurs anytime someone analyzes another

person's source code. It can also take place when a
developer revisits and examines their own code days after

originally writing it. Using reverse engineering is a method

of discovery. When we look at code again, whether it was

written by us or someone else, we investigate, we learn, and

we may see things that weren't there before.[18] David et al.

[19] exposed the structure of source or executable code and

found six significant static features. Based on these six

different features, authors categorised files as benign or

malicious. The six most crucial factors are Section

Alignment, Compilation Time, Size of Image, File

Alignment, File info, and Size of Header. The feature
models from large-scale projects can be reverse-engineered

with the help of this work. There are still numerous

remaining issues in the fields of feature location and

dependency mining that must be resolved for these

techniques to be implemented in useful tools.[20], One of

the hardest tasks is retrieving the pertinent component from

the repository. Tasks. The assessment and evaluation of

software components are based on a number of factors. Due

to different technological needs, goals, and business

considerations.[21] For the feature descriptions of software

components, the CBSE process also makes use of

ontologies. Components that ultimately aid in the matching
process. Several methods have been put forth for component

retrievals that use modified versions of keyword-based and

signature-matching techniques [22][23]. Several tools in

addition to ours have been created in light of the findings.

software development to be modelled. These tools'

disadvantage is that they only use a few basic

capabilities.[24]. Neural Networks are proposed to compose

key public for secure files, with 99.98% accuracy for AES,

Blowfish, and Hybrid algorithms.[25] This study will

combine two Cryptographic Algorithms, AES (Advanced

Encryption Standard) and Two fish (256 bits key generated
by HASH function SHA 256), to give more security to data

uploaded or downloaded in the Cloud system.[26]

Table 1 Literature Survey

Author/References Approach, Methods Software Used Limitations Remarks

Gonzalez, A et. al, 2015 [16] String Offset Order DexGuard and

HoseDex2Jar

Works on Android

Malware Genome

Project Apps

Works on Android

Apps

Antunes, J et.al 2012 [16] Methodology Was

Implemented FTP

Protocol D

ReverX Tools Does not require

any access to a

protocol

implementation or
its source code

To extending the

methods to, support

binary files

David, Baptiste

Filiol, Eric

Gallienne, Kévin,2017 [11]

static and dynamic

detection techniques

DAVFI/OpenDAVFi

AV software

Focus on a blind

detection on a

collection of

suspicious

software

Malware suspicious

Debray, S, et. al, 20015 [18] Cloning dynamic

analyses Methods

SPECint-2000

benchmark suite

Regarding

techniques for

understanding

obfuscated code

and the strengths

and weaknesses of

Code obfuscation

has been proposed

make it difficult to

reverse engineer

software.

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1099

sophisticated

obfuscation
algorithms

Kaizheng Liu et.al 2020 Manual Reverse

Engineering

Framework

Eembedded Linux based

IoT systems using either

read-only or writable

filesystems.

Device employs

secure boot and

the firmware

image verification

key is in secure

storage such as e-

fuse,

Some software

programmes have

relatively

constrained

methodologies.

P. Swierczynski et al.2021

Michael Werner et.al, 2018 graph analysis

methods

AES, DES, ECC and

RSA

Reverse

Engineering

process for

integrated circuits
image

Utilizing

Cryptographic

Architecture.

Stroulia, Eleni et.al,2002 [16] Dynamic reverse

engineering

techniques methods

COBOL and C CODE

GRAS, a database

Concentrating on

software

comprehension

through the

creation of models

that represent a

program's

architecture by

analyzing its

underlying code

structure.

Complexity of the

software systems

being developed

increases the

complexity of the

systems that need

to understood also

increases

Wong, Kenny,2000 [11] The proposed strategy
focuses on approaches

for software reverse

engineering and

redocumentation.

lexical, syntactic, and
semantic analysis

redocument
current software

architectures

facilitating ongoing
software

understanding

S, Steven et.al 2011 [20] Models based on a

critical heuristic for

identifying code

Linux, e Cos and

FreeBSD, kernels.

Discovering

Feature

Groupings,

Creating the

Feature Hierarchy,

In the field of

feature location,

there are a lot of

unresolved issues.

A Magbool et al.2023. [21] Approach uses a

machine learning

approach to train the

schema

Crawling Software

Repositories

software ranks

code snippets in

the top k results

using learned

schema.

Enhancing tool

performance

requires the use of

new capabilities.

S.Bajracharya et al.[22] Code Rank approach machine learning
techniques to

Utilises The
Fundamental

Coder- Ank

Notation, Which

Exclusively

Retrieves

Structural Data.

Seeing strong
power-law

behavior across

several code

entities

Diamantopoulos et al.[17]

QualBoa, Methods Code Search Engines (This instrument

combines useful

and excellent

qualities.

Using the

functional score to

rank the various

components

Christnatalis et.al 2019 [2] AES Blowfish 2Tier Dual encryptions Used public

keyalgorithms

K. I. Santoso 2020 AES Blowfish 2 Tier Increase

computational cost

Model is the best

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1100

V. REVERSER ENGINEERING

Reverse engineering is an essential set of techniques

and tools used to uncover the inner workings of software.

More precisely, it involves analyzing an existing system to

identify its components, understand how they interact, and

create alternate representations of the system—often at a

higher level of abstraction.[27]. Through reverse

engineering, we gain insight into a software system's

architecture, operational methods, and the features that drive

its behavior. This approach, supported by automated

analysis tools and evaluation techniques, provides a practical
way to understand the complexity of software and uncover

its underlying structure. While reverse engineering is not

new, it occurs more often than we might think—whenever

someone studies another’s code, they are essentially

engaging in a form of reverse engineering. Even revisiting

one’s own code after some time can become a reverse

engineering exercise. Ultimately, it is a process of

discovery, often revealing unexpected elements as we
explore and learn from existing code[18]. Protocol reverse

engineering (PRE) focuses on understanding communication

protocols by carefully analyzing interactions, distinguishing

it from other reverse engineering goals like software binary

analysis, which typically aims to recover source code or gain

insight into how an application functions. While PRE often

involves these objectives, its scope is not limited to them.

This paper presents a reverse engineering methodology and

a corresponding tool used to study how network-based

intrusion detection systems match signatures. The findings

from this analysis can be applied to create modified attacks
that avoid detection or generate benign traffic that

overwhelms the detection system [28]. Multiple analytical

approaches are employed to evaluate communication

systems. As a result, there are two fundamental

methodologies for comprehending these processes: entity

analysis and trace analysis, which serve as the two distinct

protocols for investigation [19]. as shown in Fig. 4 below.

Fig 4 Reverser Engineering Process

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1101

IDA Pro disassembles binary programs to generate execution maps, displaying the instructions in assembly language. Since
assembly code can be difficult to understand, advanced versions of IDA Pro incorporate techniques that improve readability and

make the analysis more accessible [29].

Fig 5 IDA Pro Reverser Engineering Tools

VI. RESULTS AND DISCUSSION

The expected outcomes include both the source code

and the binary executable files of the VeraCrypt encryption

software. To achieve this, two primary analysis approaches
are typically employed: static analysis and dynamic analysis.

Static analysis involves examining the program’s

code or binary files without executing them. This method

allows the analyst to explore the structure, logic, and

potential vulnerabilities of the software by inspecting the

codebase, disassembled instructions, control flow graphs,

and data structures. Tools like IDA Pro or Ghidra are often

used in this phase to reverse engineer and understand the

underlying implementation of VeraCrypt.

Dynamic analysis, on the other hand, involves

observing the program’s behavior during execution. This

includes monitoring how the software interacts with the

system, how it handles inputs, allocates memory, or

responds to certain triggers. Techniques such as debugging,

runtime tracing, and system call monitoring help provide

insights into the real-time functioning of VeraCrypt,

particularly the encryption and decryption processes.

By combining both static and dynamic analysis, a
comprehensive understanding of the VeraCrypt encryption

system can be developed, enabling the reconstruction of its

source code, evaluation of its security mechanisms, and

potential discovery of hidden or undocumented features.

Static analysis is a technique for learning as much as

you can without actually executing a binary.[30]. To

accomplish this, reverse engineering and disassembly

techniques are employed. In addition, more specialized

analysis methods may be used, such as string analysis, code

obfuscation handling, restricted execution environments,
unpacking, and other related techniques.

Static analysis involves breaking down the internal

structure of the malware without running it. This typically

includes loading the executable into tools like IDA Pro to

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1102

disassemble the code, followed by a thorough examination
of the disassembled output and any available documentation.

The goal is to understand the program’s functionality, logic,

and potentially malicious behavior through careful

inspection of its code [31] . debugger is employed in

dynamic analysis to look into the internal state of an active

malicious attack [32] [31]. A debugger is a hardware or

software tool utilized to examine and verify the operation of

other programs. Dynamic analysis methods are implemented

to gather comprehensive details about a program's execution

and behavior. Three prominent debuggers used for botnet

detection include [the text appears incomplete here]. Unlike
alternative methodologies that present greater complexity

and difficulty in understanding, this article presented a

comprehensive reverse engineering approach in a clear and

accessible format to analyze the internal mechanics and

interpretive functions of software applications.The fig

Below shows a details module of VeraCrypt’s IDRIX is a
software development company that specialises in

encryption and security solutions. VeraCrypt v1.24 is free

and open-source encryption software for Windows, Mac,

and Linux operating systems. It offers five encryption

combinations, each of which uses a combination of two or

three encryption algorithms in a fixed order to provide

enhanced security. XTS mode is used for encryption, which

provides enhanced security against certain types of attacks.

The number of tiers refers to the number of encryption

algorithms used in the combination, with 2-tier

combinations using dual encryption and 3-tier combinations
using triple encryption., In order to compare performance,

hybrid models were developed using Visual Studio 2013,

C++, Crypto, Windows 10 Home Single Language OS 64-

bit architecture, 8 GB RAM, and Intel CoreTM i3-3217U

CPU.

Table 2 Vera Crypts Algorithms Modules

IDRIX

VeraCrypt

v1.24

Oct-2019

AES-

TWOFISH
2 Tier

Dual encryption in fixed order.

Each block of 128-bit encrypted with Twofish then with AES in XTS Mode.

AES-Serpent 2 Tier
Dual encryption in fixed order.

Each block of 128-bit encrypted with AES then with Serpent in XTS Mode.

Serpent-

Twofish
2 Tier

Dual encryption in fixed order.

Each block of 128-bit encrypted with Serpent then with Twofish in XTS Mode.

AES-

TwofishSerpent
3 Tier

Triple encryption in fixed order.

Each block of 128-bit encrypted with AES, Twofish and Serpent in XTS Mode.

Serpent-

TwofishAES
3 Tier

Triple encryption in fixed order.

Each block of 128-bit encrypted with Serpent, Twofish and AES in XTS Mode.

Fig 6 A Collection of Recovered Source Code Segments Related to Encryption Algorithm

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1103

Fig 7 VeraCrypt’s Encryption Algorithms

Fig 8 Vera Crypt’s Encryption Algorithms Two Tier and Three Tier Performance Analysis

AES-TWOFISH or TWOFISH-AES model performance is superior in a hybrid cascaded 2-tier model, while AES-

TWOFISH-SERPENT or SERPENTTWOFISH-AES model performance is nearly comparable in a hybrid cascaded 3-tier model.

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1104

Fig 9 A Sample of Retrieved Source Code Snippets used in Encryption Algorithms

Fig 10 A selection of Random Pool Enriched Extracted Source Codes

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1105

VII. CONCLUSION

This paper primarily concentrated on the reverse

engineering analysis of VeraCrypt software. The application

underwent thorough examination to identify source code

within different modules, with its documentation

systematically organized into distinct sections. The research
presented a detailed methodology for developing a protocol

applicable to pre-existing software systems. Through this

approach, the programmers' architectural design was

observed and documented. By leveraging the reconstructed

design framework, which was preserved within a software

development environment, it becomes possible to create a

new version of the original program. The subsequent

sections provide detailed accounts of the interactions and

novel findings encountered during the protocol development

process. The following statements present a consolidated

overview of the identified challenges and issues discovered

throughout the investigation. Hybrid cryptographic
VeraCrypt models like AES-TWOFISH, AES-BLOWFISH,

and SERPENT-TWOFISH-AES combine conventional

cyphers to form a strong model that enhances data security.

The performance of AES is the best, but its avalanche effect

is less than that of other models.

REFERENCES

[1]. M. K. Rogers and K. Seigfried, “The future of

computer forensics: A needs analysis survey,”

Comput. Secur., vol. 23, no. 1, pp. 12–16, 2004, doi:
10.1016/j.cose.2004.01.003.

[2]. H. Majed, H. N. Noura, and A. Chehab, “Overview of

Digital Forensics and Anti-Forensics Techniques,”

8th Int. Symp. Digit. Forensics Secur. ISDFS 2020,

no. June, 2020, doi:

10.1109/ISDFS49300.2020.9116399.

[3]. M. Gül and E. Kugu, “A Survey On Anti-Forensics

Techniques,” Int. Artif. Intell. Data Process. Symp.,

2017.

[4]. K. Conlan, I. Baggili, and F. Breitinger, “Anti-

forensics: Furthering digital forensic science through

a new extended, granular taxonomy,” DFRWS 2016
USA - Proc. 16th Annu. USA Digit. Forensics Res.

Conf., vol. 18, no. December 2015, pp. S66–S75,

2016, doi: 10.1016/j.diin.2016.04.006.

[5]. E. Pimenidis, “Computer Anti-forensics Methods and

Their Impact on Computer Forensic Investigation

Computer Anti-forensics Methods and Their Impact

on,” no. August 2009, pp. 145–155, 2016, doi:

10.1007/978-3-642-04062-7.

[6]. G. C. Kessler, “Anti-forensics and the digital

investigator,” Proc. 5th Aust. Digit. Forensics Conf.,

pp. 1–7, 2007.
[7]. A. R. Mothukur, A. Balla, D. H. Taylor, S. T.

Sirimalla, and K. Elleithy, “Investigation of

Countermeasures to Anti-Forensic Methods,” 2019

IEEE Long Isl. Syst. Appl. Technol. Conf., pp. 1–6,

2019.

[8]. M. S. Bari and A. T. Siddique, “Study on different

Cryptography Algorithm a Critical Review,” Int. J.

Adv. Res. Comput. Eng. Technol. Vol. 6, Issue 2,

Febr. 2017, ISSN 2278 – 1323 Study, vol. 6, no. 2,

pp. 177–182, 2017.

[9]. F. Hou, N. Xiao, F. Liu, and H. He, “Secure disk with

authenticated encryption and IV verification,” 5th Int.

Conf. Inf. Assur. Secur. IAS 2009, vol. 2, pp. 41–44,

2009, doi: 10.1109/IAS.2009.48.

[10]. Q. X. Miao, “Research and analysis on Encryption
Principle of TrueCrypt software system,” 2nd Int.

Conf. Inf. Sci. Eng. ICISE2010 - Proc., pp. 1409–

1412, 2010, doi: 10.1109/ICISE.2010.5691392.

[11]. H. Gonzalez, A. A. Kadir, N. Stakhanova, N.

Alzahrani, and A. A. Ghorbani, “Exploring reverse

engineering symptoms in android apps,” Proc. 8th

Eur. Work. Syst. Secur. EuroSec 2015, 2015, doi:

10.1145/2751323.2751330.

[12]. K. Lim, Y. Jeong, S. J. Cho, M. Park, and S. Han,

“An android application protection scheme against

dynamic reverse engineering attacks,” J. Wirel. Mob.

Networks, Ubiquitous Comput. Dependable Appl.,
vol. 7, no. 3, pp. 40–52, 2016.

[13]. E. J. Schwartz and T. Avgerinos, “All you ever

wanted to know about dynamic taint analysis forward

symbolic execution (but might have been afraid to

ask),” pp. 1–5, 2010.

[14]. J. Narayan, S. K. Shukla, and T. C. Clancy, “A

survey of automatic protocol reverse engineering

tools,” ACM Comput. Surv., vol. 48, no. 3, 2015, doi:

10.1145/2840724.

[15]. E. Stroulia and T. Systä, “Dynamic analysis for

reverse engineering and program understanding,”
ACM SIGAPP Appl. Comput. Rev., vol. 10, no. 1,

pp. 8–17, 2002, doi: 10.1145/568235.568237.

[16]. D. Cordes and M. Brown, “The Literate-

Programming Paradigm,” Computer (Long. Beach.

Calif)., vol. 24, no. 6, pp. 52–61, 1991, doi:

10.1109/2.86838.

[17]. T. Diamantopoulos, K. Thomopoulos, and A.

Symeonidis, “Reusability-aware Recommendations

of Source Code Components,” pp. 488–491, 2016,

doi: 10.1145/2901739.2903492.

[18]. E. (2011). R. secrets of reverse engineering (1st ed.).

J. W. & S. Eilam, Reversing: Secrets of Reverse
Engineering. Wilely Publishing, 2011.

[19]. B. David, E. Filiol, and K. Gallienne, “Structural

analysis of binary executable headers for malware

detection optimization,” J. Comput. Virol. Hacking

Tech., vol. 13, no. 2, pp. 87–93, 2017, doi:

10.1007/s11416-016-0274-2.

[20]. S. She, R. Lotufo, T. Berger, A. Wa̧sowski, and K.

Czarnecki, “Reverse engineering feature models,”

Proc. - Int. Conf. Softw. Eng., pp. 461–470, 2011,

doi: 10.1145/1985793.1985856.

[21]. N. Bibi, T. Rana, A. Maqbool, F. Afzal, A. Akgül,
and M. De la Sen, “An Intelligent Platform for

Software Component Mining and Retrieval,” Sensors

(Basel)., vol. 23, no. 1, pp. 1–24, 2023, doi:

10.3390/s23010525.

[22]. R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme:

Finding and leveraging implicit references in a web

search interface for programmers,” UIST Proc. Annu.

ACM Symp. User Interface Softaware Technol., pp.

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

Volume 10, Issue 8, August– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25aug411

IJISRT25AUG411 www.ijisrt.com 1106

13–22, 2007, doi: 10.1145/1294211.1294216.

[23]. E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and

P. Baldi, “Mining Internet-scale software

repositories,” Adv. Neural Inf. Process. Syst. 20 -

Proc. 2007 Conf., no. January, 2008.

[24]. R. P. and S. C. S. Neelamadhab Padhy, “(PDF)

Identifying the Reusable Components from
Component-Based System_ Proposed Metrics and

Model _ Rasmita Panigrahi - Academia,” Adv. Intell.

Syst. Comput., 2019.

[25]. Christnatalis, A. M. Husein, M. Harahap, A. Dharma,

and A. M. Simarmata, “Hybrid-AES-Blowfish

algorithm: Key exchange using neural network,”

2019 Int. Conf. Comput. Sci. Inf. Technol.

ICoSNIKOM 2019, pp. 4–7, 2019, doi:

10.1109/ICoSNIKOM48755.2019.9111500.

[26]. K. I. Santoso, M. A. Muin, and M. A. Mahmudi,

“Implementation of AES cryptography and twofish

hybrid algorithms for cloud,” J. Phys. Conf. Ser., vol.
1517, no. 1, 2020, doi: 10.1088/1742-

6596/1517/1/012099.

[27]. J. H. Chikofsky, E., & Cross, I., “Reverse

Engineering and Recovery A Taxonomy,” IEEE

Softw., p. 7(1), 13-17, 1990.

[28]. D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R.

a Kemmerer, “Reverse Engineering of Network

Signatures,” Proc. Auscert Asia Pacific Inf. Technol.

Secur. Conf. Gold, no. i, pp. 1–86499, 2005.

[29]. E. Summary and I. D. a Pro, “Executive Summary :

IDA Pro – at the cornerstone of IT security What is
IDA Pro ? How is IDA Pro useful ? Who are IDA Pro

users ?,” PC Mag., 2009.

[30]. R. Sihwail, K. Omar, and K. A. Z. Ariffin, “A Survey

on Malware Analysis Techniques : Static , Dynamic ,

Hybrid and Memory Analysis,” no. September, 2018,

doi: 10.18517/ijaseit.8.4-2.6827.

[31]. M. Sikorski and A. Honig, Practical malware

analysis: the hands-on guide to dissecting malicious

software. no starch press. 2012.

[32]. O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach,

“Dynamic malware analysis in the modern era—A

state of the art survey,” ACM Comput. Surv., vol. 52,
no. 5, 2019, doi: 10.1145/3329786.

https://doi.org/10.38124/ijisrt/25aug411
http://www.ijisrt.com/

