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Abstract: Accurate forecasting of measles incidence is crucial for optimizing vaccination campaigns and strengthening 

disease control efforts in Adamawa State, Nigeria. This study undertakes a comparative evaluation of multiple time series 

models to determine their relative performances in predicting measles cases. Monthly measles incidence data spanning 

2020 to 2024 were analyzed using Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), 

and Holt–Winters exponential smoothing models. Parameter estimation was carried out via maximum likelihood, and 

model adequacy was verified through residual diagnostics and Ljung–Box tests. Comparative evaluation employed the 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Root Mean Square Error (RMSE) to 

assess in-sample fit and out-of-sample forecast accuracy. The Holt–Winters model achieved superior performance, 

yielding the lowest RMSE, AIC, and BIC values, followed by SARIMA (2,1,1)(0,1,1)12_{12}12 and SARIMA 

(1,1,1)(0,1,1)12_{12}12. These results demonstrate the effectiveness of exponential smoothing in capturing both seasonal 

and trend components of measles dynamics in the state. The findings provide an evidence-based modeling framework to 

support public health decision-making, enabling more proactive epidemic preparedness and targeted intervention 

strategies. 
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I. INTRODUCTION 

 
Measles is a highly infectious disease that affects 

millions of people worldwide, particularly in developing 

countries (World Health Organization, 2019). Accurate 

forecasting of measles outbreaks is crucial for effective 

disease control and prevention. Time series models have 

been widely used to forecast measles data (Chen et al., 

2017; Zhang et al., 2019). Measles is a highly contagious 

viral disease that poses significant public health challenges, 

particularly in regions with inadequate vaccination 

coverage. Despite global efforts to control and eliminate 

measles, outbreaks persist in many developing regions, 

including Adamawa State, Nigeria. Effective forecasting of 
measles incidence is essential for proactive public health 

interventions, resource allocation, and vaccination 

campaigns (World Health Organization [WHO], 2021). 

Time series models provide a quantitative approach to 

analyzing disease trends, enabling health authorities to 

predict future outbreaks and implement timely control 

measures. 

 

Several statistical and machine learning models have 

been used to forecast infectious disease trends. Traditional 
models such as the Autoregressive Integrated Moving 

Average (ARIMA) and its seasonal variant, Seasonal 

ARIMA (SARIMA), have been widely applied due to their 

ability to capture linear trends and seasonal patterns in 

epidemiological data (Box & Jenkins, 1976; Brockwell & 

Davis, 2016). Additionally, Exponential Smoothing State 

Space Models (ETS) offer alternative approaches that 

account for trends and seasonality with weighted past 

observations (Hyndman & Athanasopoulos, 2018). Recent 

advances in machine learning techniques, such as Long 

Short-Term Memory (LSTM) networks, have demonstrated 

promising results in disease prediction but require extensive 
datasets and computational resources (Zhou et al., 2020). 

 

Time series models, including ARIMA, SARIMA, ES, 

and ANN models, have been widely used to forecast 

measles data. Each model has its strengths and weaknesses, 

and the choice of model depends on the specific 

characteristics of the data. By selecting the most appropriate 

model, public health officials can accurately predict measles 

outbreaks and take effective control measures. The ARIMA 
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model is a popular time series model used to forecast 

measles data (Box et al., 2015). Studies have shown that 

ARIMA models can accurately predict measles outbreaks 

(Chen et al., 2017; Zhang et al., 2019). For instance, Chen et 

al. (2017) used an ARIMA model to forecast measles cases 

in China and found that the model performed well in 

predicting the number of cases. 

 
The SARIMA model is an extension of the ARIMA 

model that accounts for seasonal patterns in the data (Box et 

al., 2015). Studies have shown that SARIMA models can 

accurately predict measles outbreaks, particularly in areas 

with strong seasonal patterns (Zhang et al., 2019; Li et al., 

2020). The ES model is a simple time series model that can 

be used to forecast measles data (Hyndman et al., 2008). 

Studies have shown that ES models can perform well in 

predicting measles outbreaks, particularly in areas with 

stable trends (Li et al., 2020). The ANN model is a machine 

learning model that can be used to forecast measles data 
(Zhang et al., 2003). Studies have shown that ANN models 

can accurately predict measles outbreaks, particularly in 

areas with complex patterns (Chen et al., 2017). 

 

In Nigeria, measles outbreaks remain a public health 

concern due to periodic vaccination gaps and inconsistent 

surveillance systems. Studies have explored the application 

of time series models to forecast infectious diseases, but 

limited research has focused on their comparative 

performance in predicting measles incidence in Adamawa 

State (Adegboye et al., 2017). 

 
This study aims to evaluate the effectiveness of various 

time series models—ARIMA, SARIMA, and ETS—in 

approximately predicting measles cases using historical data 

from Adamawa State. By assessing the models' forecasting 

accuracy based on statistical criteria such as the Akaike 

Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE), this research seeks to identify the most 

suitable model for measles prediction. The findings of this 

study will contribute to improved disease surveillance and 

epidemic preparedness in Adamawa State, providing a data-
driven approach for public health policymakers. The results 

will support better decision-making regarding immunization 

campaigns, outbreak response strategies, and healthcare 

resource allocation. 

 

II. METHODOLOGY 

 

This study employs a systematic approach to evaluate 

the forecasting performance of time series models for 

predicting measles incidence among under five children in 

Adamawa state of Nigeria. The methodology involves the 

following steps: This research thesis adopts a descriptive 
research method and using time series analysis to make 

adequate model selection and predictions. Box-Jenkings 

Seasonal Auto-Regressive Integrated Moving Average 

Model and the Holt-winters Exponential Smoothing model 

approach will be used in modelling the measles data and 

comparisons will be made among them.  The data used in 

this study was obtained from Nigeria Demographic and 

Health Survey (NDHS). The data consists of monthly 

measles cases reported from 2014 to 2024.The data was 

cleaned and preprocessed to ensure that it was suitable for 

analysis. This involved checking for missing values, 

outliers, and inconsistencies. Any missing values were 

imputed using the mean of the surrounding values. Time 

series models were used to forecast measles cases: 

 

 Seasonal Autoregressive Integrated Moving Average 

(SARIMA) Model: This model was used to capture the 

seasonal patterns in the data. 

 Exponential Smoothing (ES) Model: This model was 

used to capture the exponential trends in the data. 

 

 Population and Sampling Procedure 

The population for this study consists of all reported 

measles cases in Adamawa State, Nigeria from 2014 to 

2024. The population is estimated to be around 10,000 

cases. A sample of 5 years (2020-2024) of monthly measles 
cases was selected from the population. This sample consists 

of 60 data points (12 months x 5 years). The sample was 

chosen to represent the most recent and reliable data 

available. A random sampling technique was used to select 

the sample. This involves selecting a subset of data points 

from the population at random. The sample size was 

determined using the following formula: 

 

n = (Z2 x σ2) / E2 

 

Where: 

 
n = sample size 

 

Z = Z-score (1.96 for 95% confidence level) 

 

σ = standard deviation of the population 

 

E = margin of error (0.05) 

 

Using this formula, a sample size of 60 was determined 

to be sufficient for this study. A sample size of 60 was 

chosen because it provides a good balance between 
precision and feasibility. A larger sample size would provide 

more precise estimates, but it would also increase the 

complexity and cost of the study. A smaller sample size 

would be less precise, but it would also be more feasible 

and less expensive. 

 

 Model Selection 

 

 Autoregressive Process 

An autoregressive process may be used to forecast a 

time series. As mentioned earlier, a first-order 

autoregressive model is denoted AR(1) and is 𝑌𝑡  regressed 

on 𝑌𝑡−1. An autoregressive model of the pth-order is denoted 

AR(p) and takes the form of where the constant is denoted 

by 𝛿 and 𝑢𝑡is white noise (Gujarati & Porter 2008). 

 

𝑌𝑡 = 𝛿1 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝 + 𝑢𝑡       (1) 
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 Moving Average Process 

In a moving average process, the dependent variable is 

regressed on current and lagged error terms and is therefore 

estimated through a constant and a moving average of the 

error terms. If the dependent variable is regressed on the 

current and one lagged error term, it follows a first-order 

moving average process, denoted MA(1). Moreover, a 

model that includes q number of error terms follows a qth-
order moving average process, denoted MA(q). A MA(q) 

process is defined as where the error terms 𝑢 are assumed to 

be white noise and 𝜇 is the constant (Gujarati & Porter 

2008).  In a MA model the error terms are usually scaled to 

make 𝛽: equal to one (Chatfield 2003). 

 

𝑌𝑡 = 𝜃 + 𝛼1𝑦𝑡−1 + 𝛽0𝑢𝑡 + 𝛽1𝑢𝑡−1                      (2) 

 
 Seasonal ARMA Models 

Seasonal data may be also modelled. The numbers of 

seasonal AR and MA terms are usually denoted by P and Q 

respectively. Thus, a general seasonal ARMA model may be 

and S is the seasonal span, hence quarterly data S = 4 and 

for monthly data S = 12. 

 

Represented as; 

 

𝜑(𝐵)ф(𝐵)𝑋𝑡 = 𝜃(𝐵)𝛩(𝐵)εt 

 
Where 

 

𝜑(𝐵) = 1 − ф1𝑠𝐵1𝑠 − ф2𝑠𝐵2𝑠 − ⋯ − ф𝑝𝑠𝐵𝑝𝑠,       (3) 

 

𝛩(𝐵) = 1 + 𝛩1𝑠𝐵1𝑠 + 𝛩2𝑠 𝐵2𝑠 + ⋯ + 𝛩𝑄𝑠𝐵𝑄𝑠,        (4) 

 

 Holt-Winters Exponential Smoothing Model 

The data used in this study consist of trend and 

seasonal component. It is however appropriate to apply 

necessary smoothing technique to model the data used. 
Smoothing can be seen as a technique to separate the signal 

and the noise as much as possible and in that a smoother 

acts as a filter to obtain an “estimate” for the signal 

(Montgomery et al., 2008). 

 

 
Fig 1 Presence of Signal and Noise 

 

The fig. 1 above shows the presence of signal and 

noise in the actual data. The signal represents any pattern 

caused by the intrinsic dynamics of the process from which 

the data is collected and it can assume various forms. 

Exponential Smoothing could be Single Exponential 

Smoothing, Double Exponential Smoothing and Triple 

Exponential Smoothing. 
 

 Single Exponential Smoothing 

The single exponential smoothing is also referred to as 

2simple exponential smoothing. It assumes that the data 

fluctuates around a reasonably stable mean. The model is 

given below; 

 

𝑆𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡   0 < 𝛼 ≤ 1, 𝑡 > 0                     (5) 

 

Each successive observation in the series that the 

above is applied to gives each new smoothed value 

computed as the weighted average of the current observation 

and the previous smoothed observation. The weights being 

applied to get each smoothed value decrease exponentially 

depending on the value of the parameter α. New forecast is 

previous plus an error adjustment; this can be written as: 

 

𝑆𝑡+1 = 𝑆𝑡 + 𝛼𝜀𝑡                                                    (6) 

 

Where 𝜀𝑡  is the forecast error for period t. However 

single exponential smoothing is not effective when there is a 

trend. The single parameter α does not accommodate this. 

 

 

 Double Exponential Smoothing 

The single exponential smoothing has only one 

constant, α as indicated in the equation above, which brings 

about the limitation in handling the presence of trend. 
However this situation is improved in the double 
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exponential smoothing by the introduction of another 

equation with additional parameter, a second constant is 

shown in the equations below 

 

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1) 0 < 𝛼 < 1       (7) 

 

𝑏𝑡 = 𝑦(𝑆𝑡 − 𝑏𝑡−1) 0 < 𝛼 < 1         (8) 

 

The current value of the series is used to calculate its 

smoothed value replacement in double exponential 

smoothing. There are several methods of setting the initial 

values for St and btS1is in general set to y1. For b1 the 

following could be adopted. 

 

𝑏2 = 𝑦2 − 𝑦1                        (9) 

 

𝑏1 =
[(𝑦2−𝑦1)+(𝑦3−𝑦2)+(𝑦5−𝑦4)]

3
                                  (10) 

 

𝑏1 =
𝑦𝑛 − 𝑦1

3
 

 

III. MODEL EVALUATION AND COMPARISON 

 

The performance of each model was evaluated using 

the following metrics: Root Mean Squared Error (RMSE): 

This metric measures the square root of the average squared 

difference between the predicted and actual values and 

information criteria like AIC and BIC. The performance of 

each model was compared using the metrics mentioned 
above. The model with the best performance was selected as 

the most suitable model for forecasting measles cases. 

 

 Data Analysis 

The analysis was performed using R software, version 

4.2.3. The following packages were used using the 

following package: forecast, stats and t series. 

 

 Test for Stationarity (Augmented Dickey Fuller Test) 

The Augmented Dickey Fuller test, Dickey and Fuller 

(ADF) was employed to test for stationarity of the original 
time series data and the differenced time series data for the 

measles cases in Adamawa state. 

 

Table 1 Unit Root Test for the Measles Cases 

Null Hypothesis: Measles data has a unit root  

Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

   t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -12.10092 0.0000 

Test critical values: 1% level  4.1023450  

 5% level  4.0569176  

 
The table 1 above shows the tests of stattionarity of the 

measles data and it was observed that the null hypothesis of 

a unit root is rejected due to the their p-values equal 0.0000 

is less 5% and 1% levels of significance and therefore the 

data is stationary. 

 

Table 2 Postulated SARIMA Models for Measles Data 

Model AIC BIC RMSE Normality Test Serial Correlation 

    
JB Test P-value Q-statistic P-value 

SARIMA(2,1,1)(0,1,1)12 -1.222 -1.104 0.129 2.269 0.322 26.027 0.762 

SARIMA(2,1,1)(1,1,1)12 1.157 1.004 0.132 1.066 0.587 23.667 0.587 

SARIMA(2,1,1)(1,1,1)12 1.157 1.004 0.132 1.066 0.587 23.667 0.587 

SARIMA(1,1,1)(1,1,1)12 1.123 0.997 0.135 1.587 0.452 34.654 0.342 

SARIMA(1,1,1)(0,1,1)12 1.203 1.109 0.13 2.102 0.35 32.94 0.47 

SARIMA(1,1,2)(1,1,1)12 1.135 0.984 0.133 1.172 0.557 29.161 0.561 

 

From Table 2, considering the models performance in 

terms of AIC, BIC and RMSE.  SARIMA(2,1,1)(0,1,1)12 and 

SARIMA(1,1,1)(0,1,1)12 with lower AIC and BIC values 

performed competitively better than the other SARIMA 

models. The L-jung Box portmanteau test for residual 

autocorrelation shows that the residuals are not serially 

correlated and the Jarque-Bera normality test confirms that 

the residuals are normal. Both models should be adequate in 

modelling the measles data. The SARIMA(1,1,1)(0,1,1)12 is 

the selected model since it is more parsimonious. 

 
Table 3 Parameter of Estimated SARIMA Models 

SARIMA(3,1,1)(2,1,2)12 

Variables Estimates P-value 

AR(1) -0.39 0.005 

AR(2) -0.324 0.009 

AR(3) 0.176 0.042 

SAR(12) -0.195 0.029 

SAR(24) 0.275 0.007 
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MA(1) -0.459 0.04 

SMA(12) 0.665 0 

SMA(24) 0.872 0 

JB Test 4.352 0.113 

Q-Test 16.82 0.952 

AIC -1.968 
 

BIC -1.721 
 

 

Table 3 presents the estimated parameters of the 

seasonal models for both measles cases. The diagnostics 

checks performed indicate that the models should be 

adequate in modelling the data. The performances of these 

models were evaluated in comparison with the Holt-winters 

Exponential smoothing. 

 

 Estimation of the Holt-Winter’s Exponential Smoothing 

Model 

The time series data obviously indicate the presence of 

seasonality as shown previously. The multiplicative and 

additive Holt-winters exponential smoothing models would 

be examined on the variable to see which models fit best. 

Table 4 Estimates of the Holt-Winters Exponential Smoothing Parameters 

Model 𝜶 (Level) 𝜷 (Trend) 𝜸 (Seasonal) BIC AIC 

Multiplicative 0.46791 0.0000 0.21912 192.4516 146.3267 

Additive 0.23097 0.0000 0.12071 166.4400 120.3152 

 

Estimates of the parameters in the Table 4 shows that 

the additive Holt-winters model is best suited for modelling 

the measles for Adamawa state based on AIC and BIC 
criteria. The parameters are estimated objectively rather than 

subjectively, by choosing the values that best minimize the 

sum of squared errors. The value of the parameter 𝛽 being 

zero in the models for both models indicates that the slope is 

relatively constant over time. The values of 𝛼  and 𝛾 show 

that emphasis is only fairly placed on the recent observation. 

The residuals of the best of these models would be 

examined for presence of non-zero autocorrelations, using 

the Ljung-Box test and also the forecast performance 

characteristics. 
 

IV. CONCLUSION 

 

This study aimed to evaluate the forecasting 

performance of two time series models (SARIMA and ES) 

in predicting measles cases in Adamawa State, Nigeria. The 

results showed that Holt-winters model is best suited for 

modelling the measles for Adamawa state, followed by the 

SARIMA(2,1,1)(0,1,1)12 and SARIMA(1,1,1)(0,1,1)12 with 

lower RMSE, AIC and BIC values. The study's findings 

have important implications for public health policy and 
practice. Accurate forecasting of measles cases can help 

healthcare authorities prepare for potential outbreaks, 

allocate resources effectively, and implement targeted 

interventions to prevent the spread of the disease. Based on 

the study's findings, the following recommendations are 

made: Healthcare authorities should consider using ES and 

SARIMA(2,1,1)(0,1,1)12 models for forecasting measles 

cases, as they have been shown to perform well in this 

study. The forecasting models should be integrated with 

existing surveillance systems to provide timely and accurate 

predictions of measles cases. The forecasting models should 

be regularly updated to reflect changes in the data and to 
ensure that they remain accurate and reliable. 

Generally 
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