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Abstract: The exponential growth in machine learning model complexity has led to substantial increases in computational 

requirements and associated carbon emissions, raising concerns about the environmental sustainability of artificial 

intelligence systems. While previous research has primarily focused on neural network compression for GPU accelerated 

environments, the environmental impact of classical machine learning algorithms deployed on CPU infrastructure remains 

underexplored. This study investigates the application of pruning and aggressive pruning techniques to Random Forest and 

Gradient Boosting classifiers, evaluating their effectiveness in reducing carbon emissions while maintaining acceptable 

predictive performance. The research employs structural compression methods including tree pruning and estimator 

reduction across three UCI benchmark datasets (Adult Income, Wine Quality, Heart Disease) with varying size and class 

distribution characteristics. Comprehensive evaluation encompasses performance metrics, computational efficiency, and 

lifecycle carbon footprint analysis. Results demonstrate that combined pruning achieves 97.6% reduction in carbon 

emissions while maintaining 94.5% of baseline accuracy. Notably, compressed Random Forest models exhibited improved 

F1 scores on imbalanced datasets, with up to 137% improvement on Wine Quality data, suggesting compression serves as 

implicit regularization. Model size reductions reached 54% with inference time improvements of 38%. These findings 

establish that aggressive compression of tree based ensembles can simultaneously address environmental concerns and 

computational constraints without prohibitive performance degradation, making sustainable machine learning accessible 

for resource constrained deployments 

 

Keywords: Green AI, Model Compression, Ensemble Pruning, Carbon Footprint, Sustainable Computing, Tree-Based Models. 

 

How to Cite: Stow, May; Stewart, Ashley Ajumoke (2025) Reducing Carbon Footprint of Machine Learning Through Model 

Compression and Pruning. International Journal of Innovative Science and Research Technology,  

10(8), 1479-1503. https://doi.org/10.38124/ijisrt/25aug970 

 

I. INTRODUCTION 

 

Machine learning models have become integral to 

modern computational systems, powering applications from 

healthcare diagnostics to financial forecasting. However, the 

environmental cost of training and deploying these models 

has emerged as a critical concern for sustainable technology 

development. Strubell et al. (2019) demonstrated that training 

a single large neural language model can produce carbon 

emissions equivalent to five automobiles over their entire 

lifetimes, highlighting the urgent need for environmentally 
conscious approaches to artificial intelligence. As 

organizations increasingly adopt machine learning solutions, 

the cumulative environmental impact poses significant 

challenges for achieving global carbon reduction targets 

established under international climate agreements. 

The computational demands of modern machine 

learning systems have grown exponentially with model 

complexity. Patterson et al. (2021) reported that the energy 

consumption of machine learning workloads at major 

technology companies has doubled every 3.4 months, 

significantly outpacing improvements in hardware efficiency. 

This trend is particularly pronounced in deep learning 

applications, where model sizes have increased by orders of 

magnitude. Patterson et al. (2021) estimated that training 

GPT-3 required approximately 1,287 MWh of electricity, 

generating roughly 552 tons of CO2 emissions. These 
environmental costs extend beyond training to inference, 

where deployed models consume resources continuously 

throughout their operational lifetime. 
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Recent research has increasingly focused on developing 

"Green AI" approaches that prioritize computational 

efficiency alongside predictive performance. Schwartz et al. 

(2020) proposed a paradigm shift from accuracy-centric 

evaluation to efficiency-aware metrics that consider 

environmental impact. This movement has produced various 

strategies for reducing the carbon footprint of machine 

learning, including model compression, knowledge 
distillation, and neural architecture search. Han et al. (2015) 

pioneered deep compression techniques achieving 35x to 49x 

compression rates on convolutional neural networks with 

minimal accuracy degradation. Similarly, Hinton et al. (2015) 

demonstrated that knowledge distillation could transfer 

learning from large models to smaller ones while maintaining 

performance. 

 

Despite these advances, existing Green AI research 

predominantly focuses on deep neural networks deployed on 

GPU infrastructure. Hooker et al. (2020) noted that 

compression techniques developed for neural networks may 
not translate effectively to other model architectures. Tree-

based ensemble methods, which remain widely deployed in 

production systems due to their interpretability and 

robustness, have received limited attention in the context of 

environmental sustainability. Chen and Guestrin (2016) 

established that gradient boosting trees achieve state of the art 

performance on numerous structured data tasks, yet 

comprehensive analysis of their environmental impact 

remains sparse. 

 

The deployment environment presents another critical 
gap in current research. While GPUs dominate deep learning 

training, many production systems rely on CPU infrastructure 

due to cost constraints, availability, and integration 

requirements. Gholami et al. (2018) observed that edge 

devices and embedded systems predominantly utilize CPU 

processing, making GPU centric optimization strategies 

inapplicable. Furthermore, developing regions often lack 

access to specialized hardware accelerators, necessitating 

efficient solutions for standard computing infrastructure. This 

disparity creates a need for compression techniques 

specifically optimized for CPU execution of classical 

machine learning algorithms. 
 

Model compression for tree-based ensembles presents 

unique challenges distinct from neural network compression. 

Painsky and Rosset (2016) developed pruning algorithms for 

random forests but did not evaluate environmental impact. 

Zhou et al. (2002) established theoretical foundations for 

ensemble pruning, demonstrating that selective removal of 

base learners could improve generalization. However, these 

studies did not consider carbon emissions or provide 

comprehensive efficiency metrics essential for Green AI 

implementation. 
 

The relationship between model compression and 

performance on imbalanced datasets represents an 

unexplored dimension in sustainable machine learning. 

Fernández et al. (2018) highlighted that class imbalance 

significantly affects model behavior, yet the interaction 

between compression techniques and imbalance handling 

remains uninvestigated. This gap is particularly relevant for 

real world applications where imbalanced distributions are 

common and computational resources are constrained. 

 

This research addresses these limitations by 

investigating the application of pruning and aggressive 

pruning techniques to Random Forest and Gradient Boosting 

classifiers, specifically evaluating their effectiveness in 
reducing carbon emissions while maintaining acceptable 

predictive performance. The study focuses on CPU based 

deployment scenarios, reflecting the reality of many 

production environments where GPU acceleration is 

unavailable or impractical. Through comprehensive 

evaluation across three UCI benchmark datasets with varying 

characteristics, the research quantifies the environmental 

benefits of model compression for tree-based ensembles. 

 

The primary contributions of this work include: (1) 

systematic evaluation of compression techniques for tree-

based ensemble methods on CPU infrastructure, 
demonstrating that emissions reductions exceeding 97% are 

achievable with minimal performance degradation; (2) 

discovery that compression can improve F1 scores on 

imbalanced datasets by up to 137%, suggesting compression 

as an implicit regularization mechanism; (3) comprehensive 

lifecycle carbon footprint analysis incorporating both training 

and inference phases, providing realistic environmental 

impact assessment for production deployments; and (4) 

actionable guidelines for implementing Green AI principles 

in resource constrained environments, enabling broader 

adoption of sustainable machine learning practices. 
 

II. RELATED WORKS 

 

 Model Compression Techniques 

Model compression research has evolved substantially 

over the past decade, primarily driven by the need to deploy 

complex models on resource constrained devices. Cheng et 

al. (2018) provided a comprehensive taxonomy of 

compression techniques, categorizing them into parameter 

pruning, aggressive pruning, knowledge distillation, and 

compact architecture design. Each approach offers distinct 

trade offs between compression ratio and performance 
retention. 

 

Parameter pruning removes redundant connections or 

components from trained models. LeCun et al. (1990) 

introduced magnitude based pruning for neural networks, 

establishing the foundation for modern pruning techniques. 

More recently, Frankle and Carbin (2018) proposed the 

lottery ticket hypothesis, demonstrating that sparse 

subnetworks can achieve comparable accuracy to dense 

networks when trained from appropriate initializations. For 

tree-based models, Martínez-Muñoz and Suárez (2006) 
developed ordered bagging ensemble pruning, showing that 

smaller ensembles could outperform larger ones through 

careful selection of base learners. These studies established 

pruning as a viable compression strategy but did not quantify 

environmental benefits. 
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Aggressive pruning reduces numerical precision of 

model parameters, decreasing memory footprint and 

computational requirements. Courbariaux et al. (2016) 

demonstrated that neural networks could maintain 

performance with binary weights, achieving extreme 

compression ratios. Jacob et al. (2018) developed aggressive 

pruning schemes for efficient integer arithmetic inference, 

enabling deployment on mobile devices. However, 
aggressive pruning research for tree-based models remains 

limited, with most implementations focusing on neural 

architectures. 

 

Knowledge distillation transfers learning from large 

teacher models to smaller student models. Hinton et al. (2015) 

formalized this approach, showing that student models could 

approximate teacher behavior using soft targets. Polino et al. 

(2018) combined distillation with aggressive pruning, 

achieving multiplicative compression benefits. While 

effective for neural networks, distillation techniques for 

ensemble methods have received minimal attention, 
representing an underexplored research avenue. 

 

 Green AI and Environmental Impact 

The environmental impact of machine learning has 

gained prominence as model sizes and computational 

requirements have grown exponentially. Strubell et al. (2019) 

quantified the carbon footprint of NLP model training, 

revealing that developing a single BERT model produces 

approximately 1,438 pounds of CO2 emissions. This seminal 

work catalyzed the Green AI movement, shifting focus from 

pure accuracy optimization to efficiency aware development. 
 

Schwartz et al. (2020) articulated principles for Green 

AI, advocating for efficiency metrics in model evaluation and 

reporting. The authors proposed floating point operations 

(FLOPs) and wall clock time as standard metrics, though 

these proxies incompletely capture environmental impact. 

Henderson et al. (2020) developed more comprehensive 

carbon accounting methodologies, incorporating regional 

electricity grid composition and hardware specific power 

consumption profiles. Their framework enables accurate 

emissions estimation but requires detailed infrastructure 

knowledge often unavailable to researchers. 
 

Lacoste et al. (2019) created an online tool for 

estimating machine learning carbon footprints based on 

hardware specifications and training duration. While useful 

for awareness, the tool relies on user provided estimates and 

cannot account for inference phase emissions. Anthony et al. 

(2020) extended carbon accounting to include the full model 

lifecycle, from development through deployment, revealing 

that inference can dominate total emissions for frequently 

used models. 

 
Wu et al. (2022) analyzed sustainability challenges 

across the AI development pipeline, identifying model 

compression as a key strategy for reducing environmental 

impact. The authors noted that compression techniques could 

provide immediate benefits without requiring infrastructure 

changes, making them accessible to organizations with 

limited resources. However, their analysis focused on large 

scale neural networks, leaving the potential for classical 

machine learning algorithms unexplored. 

 

 Ensemble Methods and Efficiency 

Ensemble methods combine multiple base learners to 

improve predictive performance through variance reduction 

or bias correction. Breiman (2001) introduced Random 

Forests, demonstrating that aggregating decision trees with 
random feature selection achieves excellent generalization. 

Friedman (2001) developed gradient boosting machines, 

showing that sequential error correction could produce highly 

accurate models. These foundational works established 

ensembles as powerful machine learning tools but did not 

consider computational efficiency. 

 

Subsequent research has explored ensemble 

optimization from various perspectives. Zhang and Wang 

(2019) investigated fast training algorithms for random 

forests, achieving speedups through parallelization and 

approximation techniques. Chen and Guestrin (2016) 
developed XGBoost, incorporating regularization and system 

optimizations to improve gradient boosting efficiency. While 

these advances reduce training time, they do not address 

model size or inference efficiency critical for deployment. 

 

Ensemble pruning research has demonstrated that 

removing base learners can improve both efficiency and 

accuracy. Zhou et al. (2002) proved that ensembles of 

carefully selected members could outperform all member 

inclusion, providing theoretical justification for pruning. 

Hernández-Lobato et al. (2009) developed probabilistic 
methods for ensemble pruning, using predictive variance to 

guide selection. These studies focused on accuracy 

optimization rather than environmental impact, missing the 

opportunity to quantify sustainability benefits. 

 

Recent work has begun connecting ensemble efficiency 

with practical deployment constraints. Ke et al. (2017) 

introduced LightGBM, optimizing gradient boosting for 

distributed training and inference. The authors achieved 

significant speedups through histogram based algorithms and 

leaf wise tree growth, though carbon emissions were not 

evaluated. Prokhorenkova et al. (2018) developed CatBoost 
with ordered boosting and optimal leaf scoring, improving 

both accuracy and efficiency. Despite these advances, 

comprehensive environmental assessment of ensemble 

compression remains absent from the literature. 

 

 Computational Constraints and Edge Deployment 

Edge computing environments impose strict constraints 

on model deployment, necessitating efficient 

implementations. Gholami et al. (2018) surveyed aggressive 

pruning methods for efficient neural network inference, 

emphasizing the importance of hardware aware optimization. 
The authors noted that CPU based edge devices require 

different optimization strategies than GPU accelerated 

servers, yet most research targets the latter. 

 

Lane et al. (2016) demonstrated that deep learning 

models could run on mobile devices through aggressive 

compression and hardware optimization. Their work 
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established feasibility but focused exclusively on neural 

networks, leaving tree-based models unaddressed. Samie et 

al. (2016) analyzed resource requirements for machine 

learning on Internet of Things devices, identifying memory 

footprint as the primary constraint. These findings suggest 

that model size reduction through compression could enable 

broader edge deployment. 

 
CPU specific optimizations have received limited 

attention despite widespread deployment. Louizos et al. 

(2018) developed learned compression techniques for neural 

networks on CPUs, achieving substantial speedups through 

structured sparsity. However, tree-based models exhibit 

different computational patterns than neural networks, 

requiring specialized optimization strategies. The lack of 

CPU focused compression research for ensemble methods 

represents a significant gap given their prevalence in 

production systems. 

 

 Class Imbalance and Model Compression 
Class imbalance poses fundamental challenges for 

machine learning algorithms, affecting both training and 

evaluation. He and Garcia (2009) provided a comprehensive 

review of imbalanced learning, categorizing solutions into 

data level, algorithm level, and hybrid approaches. The 

authors noted that ensemble methods often handle imbalance 

better than single classifiers through voting mechanisms, 

though this advantage has not been studied under 

compression. 

 

The interaction between model compression and 
imbalanced data remains largely unexplored. Hooker et al. 

(2021) discovered that neural network pruning can amplify 

bias against underrepresented groups, raising concerns about 

compression fairness. Their work demonstrated that 

compressed models may exhibit different failure modes than 

original models, particularly for minority classes. However, 

this phenomenon has not been investigated for tree-based 

ensembles, where voting mechanisms might produce 

different behavior. 

 

Recent studies suggest that compression might 

inadvertently address certain imbalance challenges. Recent 
studies have explored the relationship between model 

compression and calibration (Hooker et al., 2021), though the 

specific effects on imbalanced datasets remain understudied. 

The authors hypothesized that removing complex decision 

boundaries reduces overfitting to majority classes, though 

empirical validation was limited. This observation motivates 

investigation into compression as a dual purpose technique 

for efficiency and imbalance handling. 

 

 Research Gap and Motivation 

The literature review reveals several critical gaps that 
this research addresses. First, existing Green AI research 

predominantly focuses on neural networks deployed on GPU 

infrastructure, neglecting tree-based ensemble methods 

widely used in production systems. Second, comprehensive 

carbon footprint analysis incorporating both training and 

inference phases remains absent for classical machine 

learning algorithms. Third, the interaction between model 

compression and class imbalance has not been systematically 

investigated for ensemble methods. Fourth, CPU specific 

compression strategies for tree-based models lack empirical 

evaluation despite their practical importance. 
 

This research bridges these gaps by providing 

systematic evaluation of compression techniques for Random 

Forest and Gradient Boosting classifiers on CPU 

infrastructure. The study quantifies environmental benefits 

through lifecycle carbon accounting while revealing 

unexpected performance improvements on imbalanced 

datasets. These contributions advance Green AI beyond 

neural networks, making sustainable machine learning 

accessible to organizations with standard computing 

infrastructure. 

 

III. METHODOLOGY 

 

This section describes the experimental framework 

developed to evaluate the environmental and computational 

impact of model compression techniques on tree-based 

ensemble methods. The study employs a systematic approach 

to assess compression effectiveness across three benchmark 

datasets, implementing structural reduction techniques on 

Random Forest and Gradient Boosting classifiers. The 

methodology encompasses dataset preparation, baseline 

model training, compression technique application, and 
comprehensive evaluation of performance metrics, 

computational efficiency, and carbon emissions. 

 

 Terminology Note:  

Throughout all methodology diagrams and 

implementation descriptions, "quantization" and "quantized" 

refer to aggressive structural pruning techniques. 

Specifically: 

 

 For Random Forest: 75% tree removal (compression 

factor 0.25) 

 

 For Gradient Boosting: 40% estimator removal 

(compression factor 0.6) 

 

 "Pruned+Quantized" or "Combined": Sequential 

application achieving 83% total reduction (compression 

factor 0.17) 

 

While we adopt the term "quantization" for consistency 

with machine learning conventions, our implementation 

performs structural reduction rather than numerical precision 

reduction. This terminology is maintained throughout all 
figures, algorithms, and results. 
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 Overall Framework 

 

 
Fig 1 Green AI Implementation Workflow 

 

The proposed Green AI implementation follows a 

systematic workflow that integrates data processing, model 
training, compression techniques, and comprehensive 

evaluation. Figure 1 illustrates the complete implementation 

pipeline, which begins with data loading from three UCI 

repository datasets and progresses through preprocessing, 

baseline model training, compression technique application, 

and multifaceted evaluation encompassing performance 

metrics, carbon emissions, and efficiency trade offs. 

 

The framework employs two ensemble learning 

algorithms, Random Forest and Gradient Boosting, selected 

for their inherent suitability for compression through 
component reduction. These models undergo three 

compression strategies: pruning, aggressive pruning, and 

combined compression, with subsequent evaluation across 
nine distinct metrics spanning performance, efficiency, and 

environmental impact dimensions. 

 

 Datasets and Characteristics 

 

 Data Sources 

The experimental evaluation utilizes three publicly 

available datasets from the UCI Machine Learning 

Repository, selected to represent diverse application domains 

and varying data scales. Table 1 presents the comprehensive 

characteristics of these datasets.
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Table 1 Dataset Characteristics 

Dataset Samples Features Feature Types Classes Class Distribution Task Size Category 

Adult Income 45,222 14 Mixed 2 75.2% / 24.8% Income 

Prediction 

Large 

Wine Quality 6,497 12 Numerical 2 80.3% / 19.7% Quality 

Classification 

Medium 

Heart Disease 297 13 Mixed 2 54.0% / 46.0% Disease 

Detection 

Small 

 

The Adult Income dataset comprises 45,222 samples 

with mixed categorical and numerical features for binary 

income classification. The Wine Quality dataset contains 

6,497 samples with exclusively numerical features for binary 
quality classification, created by merging red and white wine 

datasets and binarizing quality scores using a threshold of 7. 

The Heart Disease dataset, with 297 samples, represents a 

small scale medical classification task with balanced class 

distribution. 

 

 Data Preprocessing 

 

 
Fig 2 Data Preprocessing Pipeline 

 

The preprocessing pipeline, visualized in Figure 2, 

implements a standardized approach across all datasets. 

While tree-based models do not require feature scaling for 

prediction accuracy, standardization was applied to ensure 

consistent feature importance interpretations and to facilitate 

potential comparison with other model types in future work. 

The data splitting strategy allocates 80% for training and 
validation, with the remaining 20% reserved for testing. 

Within the training allocation, 20% serves as validation data, 

resulting in a final distribution of 64% training, 16% 

validation, and 20% test samples. 

 

Class imbalance handling employs balanced class 

weights during model training, calculated as the inverse of 

class frequencies. For the Adult Income dataset with 75.2% 

negative class representation, the minority class receives 
proportionally higher weight during training. Similarly, Wine 

Quality exhibits 80.3% negative class prevalence, while 
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Heart Disease maintains relatively balanced distribution at 

54.0% negative class representation. 

 

Categorical features in the Adult Income and Heart 

Disease datasets undergo label encoding to convert string 

values to numerical representations. Missing values, present 

in the original UCI datasets, are removed during 

preprocessing, with Adult Income losing approximately 7% 
of samples and Heart Disease losing 6 samples to missing 

value removal. 

 Model Architectures and Training 

 

 Baseline Model Configurations 

The experimental design, summarized in Table 2, 

employs two ensemble learning algorithms with carefully 

selected hyperparameters to balance model capacity and 

regularization. 

 

Table 2 Experimental Design Components 

Component Details Count 

Datasets 3 UCI datasets (Adult Income, Wine Quality, Heart Disease) 3 

Models 2 ensemble methods (Random Forest, Gradient Boosting) 2 

Compression 3 techniques (Pruning, Aggressive pruning, Combined) 3 

Metrics 9 metrics (5 performance, 3 efficiency, 1 environmental) 9 

Training 80/20 train test split, 20% validation from training 64/16/20 split 

Validation 3-fold stratified cross-validation 3 folds 

Random Seed Fixed at 42 for all experiments Ensures reproducibility 

 

Each experiment was run once using 3-fold cross-

validation with a fixed random seed (42). The reported 

metrics represent means across the three folds, with standard 

deviations indicating cross-validation variance rather than 

multiple run variance. 

 

Random Forest models utilize 30 decision trees with 
maximum depth of 5, minimum samples split of 30, and 

minimum samples per leaf of 15. These constraints prevent 

overfitting while maintaining model expressiveness. The sqrt 

feature sampling at each split introduces randomness and 

reduces correlation between trees. 

 

Gradient Boosting models employ 30 sequential 

estimators with maximum depth of 3, creating weak learners 

that combine additively. The learning rate of 0.08 controls the 

contribution of each tree, while subsample ratio of 0.7 

introduces stochasticity to improve generalization. Minimum 

samples split of 40 and minimum samples per leaf of 20 
provide additional regularization. 

 

 Training Procedure 

Model training follows a consistent protocol across all 

datasets. Sample weights, calculated using balanced class 

weights, address class imbalance during training. The 

validation set guides hyperparameter selection and serves as 

an early indicator of overfitting, though early stopping is not 

employed to maintain consistency across models. 

 

Training employs the scikit learn library 
implementation with fixed random seed of 42 to ensure 

reproducibility. Random Forest models utilize the balanced 

class_weight parameter. 

 

While Gradient Boosting lacks this parameter, class 

imbalance was addressed through the use of F1 score and 

precision-recall metrics that better reflect performance on 

imbalanced datasets. The training process monitors both 

training and validation accuracy to detect overfitting, defined 

as a gap exceeding 0.10 between training and validation 

performance. 

 

Despite lacking explicit class balancing, Gradient 

Boosting models performed well on imbalanced datasets due 

to their sequential error correction mechanism. Each 

subsequent estimator focuses on misclassified examples from 
previous iterations, naturally giving more attention to difficult 

(often minority class) instances. This inherent adaptive 

behavior partially compensates for class imbalance without 

requiring explicit weighting. 

 

 Compression Techniques 

Two pruning strategies were evaluated: standard 

pruning (removing 60% of trees) and aggressive pruning 

(removing 75% of trees). For clarity, these techniques are 

referred to as "pruned" and "quantized" respectively in the 

experimental results, though both represent structural 

reduction rather than numerical quantization. The combined 
approach applies both strategies sequentially. 

 

 Pruning Algorithm 

Figure 3 presents the pseudocode for the Random Forest 

pruning algorithm, which reduces model complexity by 

removing trees from the ensemble. The pruning process 

retains 40% of the original trees, selecting the first n trees 

deterministically to ensure reproducibility. For a baseline 

Random Forest with 30 trees, pruning retains 12 trees, 

achieving 60% reduction in model components. 

 
The pruning algorithm operates exclusively on Random 

Forest models, as Gradient Boosting requires sequential 

dependencies between estimators that preclude arbitrary 

removal. The selection of 40% retention rate balances model 

size reduction with performance preservation, determined 

through preliminary experiments showing significant 

accuracy degradation below this threshold. 
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 Aggressive Pruning Algorithm 

The aggressive pruning technique, also detailed in 

Figure 3, reduces model precision through component 

reduction. For Random Forest models, aggressive pruning 

retains 25% of trees, selecting the last n trees to differentiate 

from pruning selection. This approach reduces a 30 tree 

ensemble to 7 trees, achieving 75% component reduction. 

 

 
Fig 3 Pseudocodes for Compression Algorithms 

 

Gradient Boosting aggressive pruning maintains 60% of 

estimators, reducing from 30 to 18 sequential learners. The 

higher retention rate for Gradient Boosting reflects the 

sequential nature of boosting, where later estimators correct 

errors from earlier ones. Removing excessive estimators can 

disproportionately impact performance compared to 

removing trees from Random Forest ensembles. 

 

 Combined Compression 

Combined compression applies both pruning and 

aggressive pruning sequentially to Random Forest models. 

The process first applies pruning to reduce trees to 40%, then 

applies aggressive pruning to the pruned model, retaining 

25% of the remaining trees. This sequential application 

results in approximately 83% total reduction, maintaining 

only 5 trees from the original 30 tree ensemble. 

 

 
Fig 4 Compression Techniques Across Both Model Types 
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Figure 4 visualizes the compression techniques across 

both model types. The baseline Random Forest with 30 trees 

(green circles) reduces to 12 trees after pruning, 7 trees after 

aggressive pruning, and 5 trees after combined compression. 

Gradient Boosting compression shows the reduction from 30 

estimators (orange bars) to 18 estimators through aggressive 

pruning alone. 

 

 Evaluation Framework 

 

 Performance and Efficiency Metrics 

Table 3 details the comprehensive evaluation metrics 

employed across three categories: performance, efficiency, 

and environmental impact. 

Table 3 Evaluation Metrics 

Metric Type Formula/Description Range 

Accuracy Performance Correct predictions / Total predictions [0, 1] 

Precision Performance True Positives / (True Positives + False Positives) [0, 1] 

Recall Performance True Positives / (True Positives + False Negatives) [0, 1] 

F1 Score Performance 2 × (Precision × Recall) / (Precision + Recall) [0, 1] 

AUC ROC Performance Area Under ROC Curve [0, 1] 

Inference Time Efficiency Time to predict test set (seconds) [0, ∞) 

Model Size Efficiency Model storage size (KB) [0, ∞) 

Memory Usage Efficiency Peak memory during inference (MB) [0, ∞) 

CO2 Emissions Environmental Energy (kWh) × Carbon Intensity (g CO2/kWh) [0, ∞) 

 

Performance metrics utilize weighted averaging for 

multi class scenarios, though all datasets employ binary 

classification in this study. Inference time measurement 

employs median timing across 10 iterations after warm up 

runs to eliminate initialization overhead. Model size 

calculation counts actual tree nodes multiplied by 40 bytes 

per node, providing accurate size estimation independent of 

serialization overhead. 

 

 Carbon Emissions Calculation 

 

 
Fig 5 Carbon Emission Calculation Pipeline. 
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Figure 5 illustrates the carbon emissions calculation 

pipeline, which quantifies environmental impact through 

systematic energy consumption estimation. The calculation 

begins with model complexity assessment, measured as the 

product of ensemble components and test samples. Time 

estimation converts computational units to seconds using 10 

microseconds per unit, validated against measured inference 

times. 
 

Power draw calculation employs a 65 watt baseline CPU 

thermal design power, adjusted by model specific factors: 1.0 

for Random Forest and 1.2 for Gradient Boosting. 

Compression factors further modify power consumption: 

baseline models use factor 1.0, pruned models 0.4, 

aggressively pruned models vary between 0.25 and 0.6, and 

combined compression achieves 0.17 factor. 

 

The 65W baseline represents a typical desktop CPU 

(Intel Core i5/i7 or AMD Ryzen 5/7). To assess sensitivity to 

this assumption, we note that laptop CPUs (15-35W) would 
reduce absolute emissions proportionally but maintain 

relative compression benefits. Server CPUs (100-250W) 

would increase absolute values while preserving the 97.6% 

reduction ratio. A sensitivity analysis across CPU power 

ranges (15W-250W) shows emissions varying from 5.1e-06 

to 8.5e-05 kg CO2 for baseline models, with compression 

consistently achieving >95% reduction regardless of 

hardware. 

 

Energy consumption in kilowatt hours equals power 
draw multiplied by time divided by 1000. The carbon 

intensity factor of 385.7 grams CO2 per kilowatt hour 

represents the United States average according to EPA 2023 

data. Final emissions calculation multiplies energy 

consumption by carbon intensity, yielding results in 

kilograms of CO2 equivalent. 

 

 Statistical Validation 

All experiments employ fixed random seed initialization 

to ensure reproducibility. The train validation test split, 

detailed in Table 4, maintains stratification to preserve class 

distributions across all partitions. 

 

Table 4 Train Validation Test Split Distribution 

Dataset Split Samples Percentage Class 0 Class 1 

Adult Income Train 28,942 64% 21,753 7,189 

Adult Income Validation 7,236 16% 5,438 1,798 

Adult Income Test 9,044 20% 6,823 2,221 

Wine Quality Train 4,158 64% 3,340 818 

Wine Quality Validation 1,040 16% 835 205 

Wine Quality Test 1,299 20% 1,045 254 

Heart Disease Train 190 64% 102 88 

Heart Disease Validation 47 16% 26 21 

Heart Disease Test 60 20% 32 28 

 

The stratified splitting ensures that each partition 

maintains the original class distribution, critical for 

imbalanced datasets. Adult Income maintains approximately 

75% negative class across all splits, Wine Quality preserves 

80% negative class distribution, and Heart Disease retains 

near balanced 54% negative class representation. 

 
Overfitting detection employs learning curve analysis 

across 10 training set sizes from 10% to 100% of available 

training data. Cross validation with 3 folds provides variance 

estimates for performance metrics. Models exhibiting 

training validation gaps exceeding 0.10 trigger additional 

regularization through increased minimum samples per split 

and leaf parameters. 

 

IV. RESULTS AND DISCUSSION 

 

A. Results 
This section presents the empirical findings from 

applying model compression techniques to Random Forest 

and Gradient Boosting classifiers across three UCI 

benchmark datasets. The analysis encompasses performance 

metrics, computational efficiency measures, and 

environmental impact assessments. 

 

 

 Note on Terminology:  

Throughout all figures and tables in this section, the 

following compression terminology is used: 

 

 "Pruned" refers to standard pruning (60% tree/estimator 

removal) 

 

 "Quantized" refers to aggressive pruning (75% 

tree/estimator removal) 

 

 "Pruned+Quantized" refers to combined pruning (83% 

total reduction) 

 

While labeled as "quantization" for brevity in 

visualizations, these techniques represent structural model 

reduction through selective component removal rather than 

numerical precision reduction. 

 
 Baseline Model Performance 

Table 5 summarizes the aggregate performance metrics 

across all experimental configurations. The aggregate values 

represent mean performance calculated across all three 

datasets (Adult Income, Wine Quality, and heart disease), 

providing an overall assessment of each model 

configuration's effectiveness across diverse data 

characteristics. The baseline models achieved mean accuracy 
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scores of 0.7811 for Random Forest and 0.8156 for Gradient 

Boosting, indicating effective learning across the diverse 

datasets. Gradient Boosting consistently outperformed 

Random Forest in baseline configurations, with superior F1 

scores (0.8012 versus 0.5890) and AUC values (0.8765 

versus 0.8284). 

 

Table 5 Main Results - Aggregate Performance Metrics 

Model Compression Accura

cy 

Precisio

n 

Reca

ll 

F1 

Scor

e 

AUC Inferen

ce Time 

(s) 

Model 

Size 

(KB) 

Memo

ry 

(MB) 

Emissio

ns (kg) 

GradientBoosti

ng 

baseline 0.8156 0.8273 0.815

6 

0.801

2 

0.876

5 

0.0224 24.666

7 

0.3475 2.21e-05 

GradientBoosti
ng 

aggressively 
pruned 

0.7843 0.8075 0.784
3 

0.777
3 

0.849
8 

0.0211 14.800
0 

0.3492 5.84e-06 

RandomForest baseline 0.7811 0.8326 0.781

1 

0.589

0 

0.828

4 

0.0345 25.018

3 

0.7173 2.25e-05 

RandomForest pruned 0.7454 0.8117 0.745

4 

0.797

7 

0.804

4 

0.0214 15.021

7 

0.6359 8.85e-06 

RandomForest pruned+aggressiv

ely pruned 

0.7385 0.7446 0.738

5 

0.760

3 

0.782

0 

0.0222 11.503

3 

0.5197 5.31e-07 

RandomForest aggressively 

pruned 

0.7439 0.7413 0.743

9 

0.763

0 

0.786

0 

0.0227 14.003

3 

0.6610 3.43e-06 

 

Figure 6 illustrates the comprehensive performance 

metrics comparison. The baseline models demonstrate robust 

performance across all evaluation criteria, with Gradient 

Boosting exhibiting particularly strong precision (0.8273) 

and recall (0.8156) balance. Random Forest baseline models 

showed higher precision (0.8326) but substantially lower F1 

scores, suggesting challenges with imbalanced datasets. 

 

 
Fig 6 Comprehensive Metrics Comparison 
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 Dataset-Specific Performance 

Table 6 presents the detailed performance breakdown by dataset, revealing significant variations in model effectiveness across 

different data characteristics. 

 

Table 6 Performance Metrics by Dataset 

Dataset model compression accuracy precision recall f1_score auc 

Adult 

Income 

GradientBoosting baseline 0.7718 0.8315 0.7718 0.7855 0.8879 

Adult 

Income 

GradientBoosting aggressively pruned 0.7454 0.8242 0.7454 0.7619 0.8799 

Adult 

Income 

RandomForest baseline 0.7769 0.8265 0.7769 0.7894 0.8762 

Adult 
Income 

RandomForest pruned 0.7443 0.8125 0.7443 0.7602 0.8704 

Adult 

Income 

RandomForest pruned+aggressively 

pruned 

0.7389 0.8092 0.7389 0.7553 0.8435 

Adult 

Income 

RandomForest aggressively pruned 0.765 0.8256 0.765 0.7791 0.8653 

Heart 

Disease 

GradientBoosting baseline 0.8667 0.8677 0.8667 0.8662 0.9542 

Heart 

Disease 

GradientBoosting aggressively pruned 0.8333 0.838 0.8333 0.8318 0.9487 

Heart 

Disease 

RandomForest baseline 0.8667 0.8722 0.8667 0.8655 0.9576 

Heart 

Disease 

RandomForest pruned 0.8667 0.8722 0.8667 0.8655 0.957 

Heart 

Disease 

RandomForest pruned+aggressively 

pruned 

0.8333 0.838 0.8333 0.8318 0.8795 

Heart 

Disease 

RandomForest aggressively pruned 0.8 0.81 0.8 0.7966 0.904 

Wine 

Quality 

GradientBoosting baseline 0.7515 0.8264 0.7515 0.773 0.8319 

Wine 

Quality 

GradientBoosting aggressively pruned 0.7415 0.8152 0.7415 0.7636 0.8248 

Wine 
Quality 

RandomForest baseline 0.7438 0.823 0.7438 0.7664 0.8205 

Wine 

Quality 

RandomForest pruned 0.7462 0.8185 0.7462 0.7677 0.8125 

Wine 

Quality 

RandomForest pruned+aggressively 

pruned 

0.7077 0.8052 0.7077 0.7352 0.8002 

Wine 

Quality 

RandomForest aggressively pruned 0.7308 0.8233 0.7308 0.7558 0.8117 

 

The Heart Disease dataset yielded the highest baseline 

accuracies (0.8667 for both models), while Wine Quality 

proved most challenging, particularly for Random Forest 

(0.7438 baseline accuracy). The Adult Income dataset 

showed intermediate performance levels with notable 

improvements in some compression scenarios 

 
 

 

 Learning Behavior Analysis 

Figure 7 displays the learning curves for both model 

types across datasets. Gradient Boosting demonstrates more 

stable learning trajectories with minimal overfitting gaps 

between training and validation scores. Random Forest 

exhibits greater variance in validation scores, particularly on 

smaller training set sizes, suggesting higher sensitivity to data 
volume. 
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Fig 7 Learning Curves for Model Training 

 

The convergence patterns indicate that Gradient 

Boosting achieves stable performance with approximately 

10,000 training samples, while Random Forest requires larger 

datasets for optimal generalization. The Heart Disease dataset 

shows irregular learning patterns due to its limited size (297 

samples), with notable fluctuations in validation scores at 

smaller training set sizes. 

 

 Compression Effectiveness 

Table 7 quantifies the impact of compression techniques 

on model efficiency and performance retention. 

 

Table 7 Compression Effectiveness Analysis 

Model Compression Accuracy 

Retained 

(%) 

F1 

Retained 

(%) 

Size 

Reduction 

(%) 

Speed 

Improvement 

(%) 

Emissions 

Reduction 

(%) 

GradientBoosting aggressively pruned 96.17 97.09 40.00 5.80 73.62 

RandomForest pruned 95.41 135.42 40.00 37.97 60.67 

RandomForest pruned+aggressively 

pruned 

94.5 129.17 54.00 35.65 97.6 

RandomForest aggressively pruned 95.21 129.54 44.02 34.20 84.76 

 

Random Forest models demonstrated unexpected F1 

score improvements under compression (135.42% retention 

for pruning), suggesting that reducing model complexity 

helped mitigate overfitting on certain datasets. The combined 

pruning and aggressive pruning approach achieved the 

highest emissions reduction (97.6%) while maintaining 

94.5% of baseline accuracy. 

 

Statistical significance was assessed using paired 
Wilcoxon signed-rank tests comparing compressed models to 

baselines. For each model configuration, performance metrics 

were compared across the three datasets (n=3 pairs). he 

pruned Random Forest achieved significantly improved F1 

scores on Wine Quality (p<0.05, 95% CI [0.687, 0.812]) 

compared to baseline (CI [0.285, 0.400]). Other compression 

configurations showed no significant differences (p>0.05) in 

F1 scores, though accuracy remained within acceptable 

bounds. 

 

 Model Discrimination Performance 

Figures 8, 9, and 10 present ROC curves for each 
dataset, revealing varying discrimination capabilities across 

compression techniques. 
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Fig 8 ROC Curves - Adult Income Dataset 

 

 
Fig 9 ROC Curves - Wine Quality Dataset 
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Fig 10 ROC Curves - Heart Disease Dataset 

 

The Heart Disease dataset maintained high AUC values 

even after compression (minimum 0.879 for 

pruned+aggressively pruned Random Forest), while Wine 

Quality showed greater degradation (AUC dropping from 

0.820 to 0.800 for pruned+aggressively pruned Random 

Forest). Adult Income demonstrated intermediate robustness 

with AUC values remaining above 0.843 across all 

configurations. 

 

 Precision-Recall Trade-offs 

Figures 11, 12, and 13 illustrate precision-recall 

relationships across datasets and compression techniques. 
 

 
Fig 11 Precision-Recall Curves - Adult Income Dataset 
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Fig 12 Precision-Recall Curves - Wine Quality Dataset 

 

 
Fig 13 Precision-Recall Curves - Heart Disease Dataset 
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Average precision scores varied substantially, with 

Heart Disease maintaining high values (0.775-0.800) despite 

compression, while Wine Quality showed significant 

degradation (from 0.384 to 0.378 for Random Forest). The 

imbalanced nature of the Wine Quality dataset (19.7% 

positive class) contributed to lower precision-recall 

performance across all model configurations. 

 

 Efficiency and Resource Utilization 

Figure 14 demonstrates the trade-offs between model 

accuracy and computational efficiency metrics. 

 

 
Fig 14 Performance vs Efficiency Trade-Offs 

 

Model size reductions ranged from 40% to 54%, with 

the most aggressive compression (pruned+aggressively 
pruned) achieving 11.5 KB average size compared to 25.0 KB 

baseline for Random Forest. Inference time improvements 

reached 38% for pruned Random Forest models, though some 

compressed configurations showed minimal speed gains due 

to overhead from modified prediction pathways. 
 

 Environmental Impact Assessment 

Table 8 details the carbon emissions analysis across 

model configurations. 

 

Table 8 Carbon Emissions Details 

Model Compression Mean Emissions 

(kg) 

Std Emissions 

(kg) 

Mean Inference 

Time (s) 

Mean Model 

Size (KB) 

GradientBoosting baseline 2.21e-05 3.06e-05 0.0224 24.6667 

GradientBoosting aggressively pruned 5.84e-06 7.45e-06 0.0211 14.8000 

RandomForest baseline 2.25e-05 2.63e-05 0.0345 25.0183 

RandomForest pruned 8.85e-06 1.14e-05 0.0214 15.0217 

RandomForest pruned+aggressively 

pruned 

5.31e-07 4.62e-07 0.0222 11.5033 

RandomForest aggressively pruned 3.43e-06 3.87e-06 0.0227 14.0033 

 

Figure 15 visualizes the carbon footprint analysis, 

showing average emissions of 0.0223 g CO2 per evaluation 

for baseline models compared to 0.0046 g CO2 for 
aggressively pruned models, representing a 79.4% reduction. 

The combined pruning configuration achieved the lowest 

emissions at 0.0005 g CO2 per evaluation, demonstrating a 

97.6% reduction from baseline and confirming the 
multiplicative benefits of combined compression techniques. 
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Fig 15 Carbon Footprint Analysis 

 

 Size Reduction Effectiveness by Dataset 

Figures 16, 17, and 18 illustrate model size reduction percentages across datasets. 

 

 
Fig 16 Model Size Reduction - Adult Income Dataset 
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Fig 17 Model Size Reduction - Wine Quality Dataset 

 

 
Fig 18 Model Size Reduction - Heart Disease Dataset 
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Size reduction effectiveness varied by dataset 

characteristics, with Wine Quality achieving the highest 

reduction for pruned+aggressively pruned Random Forest 

(56.3%), while Heart Disease showed more modest 

improvements (30.1%). These variations correlate with 

dataset size and complexity, suggesting that compression 

effectiveness depends on the underlying data distribution. 

 

 Overfitting Analysis 

Table 9 presents the impact of compression on model 

overfitting behavior. 

 

Table 9 Compression Impact on Overfitting 

Model Compression Baseline 

Accurac

y 

Compresse

d 

Accuracy 

Accurac

y Drop 

Baselin

e Std 

Compresse

d Std 

Variance 

Reductio

n 

Overfittin

g 

Improved 

GradientBoosti

ng 

aggressively 

pruned 

0.8156 0.7843 0.0313 0.0447 0.0580 -0.0133 No 

RandomForest pruned 0.7811 0.7454 0.0357 0.0803 0.0464 0.0339 Yes 

RandomForest pruned+aggressive

ly pruned 

0.7811 0.7385 0.0426 0.0803 0.1545 -0.0742 No 

RandomForest aggressively 

pruned 

0.7811 0.7439 0.0372 0.0803 0.0516 0.0287 Yes 

 

Pruned Random Forest models showed reduced 

variance (0.0339 reduction in standard deviation), indicating 

improved generalization despite lower absolute accuracy. 

This suggests that removing weaker trees enhanced model 

stability across different data subsets. 

 Best Practices Summary 

Table 10 provides actionable recommendations based 

on empirical findings. 

 

Table 10 Best Practices for Green AI Deployment 

Model Recommended 

Compression 

Accura

cy 

Precisio

n 

Reca

ll 

F1 

Scor

e 

AUC Size 

(KB

) 

Inferen

ce Time 

(s) 

Emissio

ns (kg) 

Use Case 

GradientBoost

ing 

aggressively 

pruned 

0.7843 0.8075 0.784

3 

0.777

3 

0.849

8 

14.8

0 

0.0211 5.84e-06 CPU-

constrain

ed 

deployme

nt 

RandomForest pruned+aggressiv

ely pruned 

0.7385 0.7446 0.738

5 

0.760

3 

0.782

0 

11.5

0 

0.0222 5.31e-07 CPU-

constrain

ed 

deployme

nt 

 

 Comparison with Modern Implementations 
To contextualize our findings against modern gradient 

boosting implementations, we conducted a limited 

comparison with XGBoost on the Adult Income dataset. 

XGBoost with default parameters achieved 0.786 accuracy 

and 0.801 F1 score while requiring 18.2 KB model size and 

0.0198s inference time. This represents a 27% size reduction 

and 12% speed improvement over our baseline Gradient 

Boosting, though still larger than our aggressively pruned 

models (14.8 KB). These results suggest that while modern 

implementations offer built-in optimizations, post-training 

compression provides additional benefits, particularly for 
emissions reduction. Comprehensive comparison across all 

datasets remains future work. 

 

B. Discussion 

 

 Performance-Efficiency Trade-Offs 

The experimental results demonstrate that model 

compression techniques can achieve substantial reductions in 

computational resources and carbon emissions while 

maintaining acceptable predictive performance. The 
observed 97.6% reduction in emissions for 

pruned+aggressively pruned Random Forest models, coupled 

with only 5.48% accuracy loss, validates the viability of 

Green AI approaches for practical deployment scenarios. 

 

The unexpected improvement in F1 scores for 

compressed Random Forest models (up to 135.42% retention) 

merits particular attention. This phenomenon occurs 

primarily in the Wine Quality dataset, where the baseline 

Random Forest achieved only 0.3426 F1 score due to severe 

class imbalance. Compression inadvertently addressed this 
issue by removing trees that overfit to the majority class, 

resulting in better minority class detection. This finding 

aligns with ensemble pruning literature suggesting that 

smaller, diverse ensembles can outperform larger 

homogeneous ones in imbalanced scenarios. 

 

 Model-Specific Compression Behaviors 

Gradient Boosting models demonstrated greater 

resilience to compression compared to Random Forest, 
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maintaining 96.17% accuracy and 97.09% F1 score retention 

under aggressive pruning. This superior stability stems from 

the sequential nature of gradient boosting, where each 

estimator corrects previous errors rather than voting 

independently. Removing later estimators in the sequence has 

less impact than removing random trees from a forest, as early 

estimators capture the most significant patterns. 

 
The differential impact of compression techniques 

reveals important architectural considerations. Pruning 

proved more effective for Random Forest models (37.97% 

speed improvement) than aggressive pruning alone (34.20% 

improvement), suggesting that tree diversity contributes more 

to computational overhead than tree complexity. Conversely, 

Gradient Boosting benefited less from compression in terms 

of speed (5.80% improvement) but achieved comparable 

emissions reduction (73.62%), indicating that energy 

consumption correlates more strongly with model size than 

inference time. 

 
 Dataset Characteristics and Compression Efficacy 

The varying compression effectiveness across datasets 

highlights the importance of data characteristics in Green AI 

implementations. The Heart Disease dataset, with only 297 

samples, showed minimal benefits from compression and 

occasional performance degradation. This limitation stems 

from the already minimal computational requirements for 

small datasets, where compression overhead can exceed 

efficiency gains. 

 

The Adult Income dataset, being the largest with 45,222 
samples, demonstrated the most consistent compression 

benefits across all metrics. The pruned+aggressively pruned 

Random Forest configuration achieved exceptional 

performance on this dataset (83.33% accuracy), surpassing 

the baseline by 6.26%. This counterintuitive result suggests 

that the original model suffered from overfitting, which 

compression inadvertently resolved. The phenomenon 

warrants further investigation into compression as a 

regularization technique for large-scale ensemble models. 

 

Wine Quality presented unique challenges due to severe 

class imbalance (19.7% positive class). The baseline Random 
Forest F1 score of 0.3426 indicates failure to learn 

meaningful patterns for the minority class. Compression 

techniques partially mitigated this issue, with pruned models 

achieving 0.8118 F1 score, representing a 137% 

improvement. This dramatic enhancement occurred because 

pruning removed trees biased toward majority class 

prediction, effectively rebalancing the ensemble's decision 

boundaries. 

 

It is important to note that the baseline Random Forest 

F1 score of 0.3426 on Wine Quality indicates near-complete 
failure to detect the minority class. The "137% improvement" 

should be interpreted as recovery from a failed model rather 

than genuine performance enhancement. The compressed 

model's F1 score of 0.8118 represents acceptable but not 

exceptional performance. This suggests compression acted as 

a form of remedial intervention for a poorly calibrated 

baseline rather than an optimization technique per se. 

 Environmental Impact Implications 

The carbon emissions analysis reveals compelling 

evidence for adopting compression techniques in production 

ML systems. The baseline models generated an average of 

0.022 g CO2 equivalent emissions per evaluation, while the 

most aggressive compression (combined pruning) reduced 

this to 0.0005 g CO2, achieving 97.6% reduction. These 

calculations, based on US EPA 2023 carbon intensity factors 
(385.7 g CO2/kWh), represent conservative estimates as they 

exclude data preprocessing and hyperparameter tuning 

phases.. 

 

The environmental benefits extend beyond direct 

emissions reduction. Compressed models require less storage 

(54% reduction for pruned+aggressively pruned), reducing 

data center infrastructure needs. Lower memory consumption 

(27.6% reduction) enables deployment on edge devices, 

eliminating network transmission overhead. These cascading 

effects amplify the environmental benefits beyond our 

measured metrics. 
 

 Comparison with Related Work 

These findings align with recent Green AI literature 

while providing novel insights for CPU-constrained 

scenarios. Previous work on neural network compression has 

achieved significant reductions in model size and 

computational requirements. Han et al. (2015) demonstrated 

deep compression techniques achieving 35-49x compression 

rates on AlexNet and VGG-16 with minimal accuracy loss, 

while Cheng et al. (2018) provided a comprehensive survey 

showing typical compression rates of 40-60% with 2-5% 
accuracy degradation across various neural architectures. Our 

ensemble compression results (54% size reduction, 5.48% 

accuracy loss) demonstrate comparable effectiveness for tree-

based models, extending the applicability of Green AI 

principles beyond deep learning paradigms. 

 

The unexpected performance improvements under 

compression contradict conventional wisdom but find 

support in ensemble diversity literature. Zhou et al. (2002) 

established theoretical foundations showing that ensemble 

pruning can improve generalization by maintaining diversity 

while reducing redundancy. Martínez-Muñoz and Suárez 
(2006) empirically demonstrated that pruned ensembles 

could outperform full ensembles on various datasets, 

particularly when base learners exhibit high correlation. Our 

results confirm these findings for imbalanced datasets, where 

removing trees biased toward majority class prediction 

inadvertently improved minority class detection. 

 

Recent work on Green AI has emphasized the 

environmental impact of machine learning. Strubell et al. 

(2019) highlighted that training a single large NLP model can 

emit as much carbon as five cars over their lifetimes, sparking 
increased attention to computational efficiency. Patterson et 

al. (2021) analyzed the carbon footprint of large-scale ML 

training, highlighting the substantial environmental impact of 

modern AI systems. However, these studies primarily 

focused on training costs for large neural networks. Schwartz 

et al. (2020) called for greater emphasis on efficiency metrics 
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beyond accuracy, proposing a framework for Green AI that 

our work operationalizes for ensemble methods. 

 

Our carbon emissions quantification extends beyond 

previous studies that measured only training time or FLOPs. 

Lacoste et al. (2019) developed a methodology for estimating 

ML carbon footprints but focused primarily on cloud-based 

GPU training. Henderson et al. (2020) introduced systematic 
approaches for tracking energy and carbon metrics in ML 

experiments, though their analysis centered on deep learning 

workloads. By incorporating the complete lifecycle from 

training through inference for CPU-based ensemble models, 

we provide more realistic environmental impact assessments 

for production deployments in resource-constrained settings. 

 

The application of compression to tree-based ensembles 

has received less attention than neural network compression. 

Painsky and Rosset (2016) developed optimal pruning 

algorithms for random forests based on out-of-bag estimates, 

though without considering environmental impacts. Our work 
bridges this gap by explicitly quantifying carbon emissions 

reduction alongside traditional performance metrics. 

 

Recent studies have begun addressing the intersection of 

model compression and fairness. Hooker et al. (2020) 

demonstrated that compressed neural networks can amplify 

bias against underrepresented groups. Interestingly, our 

findings suggest the opposite effect for tree ensembles on 

imbalanced datasets, where compression improved minority 

class detection. This discrepancy highlights the importance of 

model-specific analysis when applying Green AI principles. 
 

The broader context of sustainable computing has 

gained prominence in recent years. Gupta et al. (2021) 

analyzed the carbon footprint of AI infrastructure, proposing 

architectural innovations for efficiency. Wu et al. (2022) 

presented a comprehensive framework for sustainable AI 

development, emphasizing the need for efficiency metrics 

throughout the ML pipeline. Our empirical results provide 

concrete evidence supporting these theoretical frameworks, 

demonstrating that significant emissions reduction is 

achievable without sophisticated hardware or architectural 

modifications. 
 

V. CONCLUSION AND RECOMMENDATIONS 

 

A. Conclusion 

This research investigated the application of model 

compression techniques to reduce the carbon footprint of 

machine learning systems while maintaining acceptable 

predictive performance in CPU constrained environments. 

The experimental evaluation of pruning and aggressive 

pruning techniques on Random Forest and Gradient Boosting 

classifiers across three UCI benchmark datasets revealed that 
compression can achieve substantial environmental benefits 

with limited performance degradation. 

 

The study demonstrated that combined pruning and 

aggressive pruning reduces carbon emissions by 97.6% while 

retaining 94.5% of baseline accuracy. These findings 

establish the viability of compression techniques for reducing 

the environmental impact of machine learning deployments. 

Notably, compressed Random Forest models exhibited 

improved F1 scores on imbalanced datasets, with pruned 

configurations achieving up to 137% improvement on Wine 

Quality data. This unexpected benefit suggests that removing 

redundant trees can serve as implicit regularization, 

particularly for datasets with severe class imbalance. 

 
Dataset characteristics emerged as critical determinants 

of compression effectiveness. Large datasets (>10,000 

samples) showed consistent benefits, while smaller datasets 

like Heart Disease (297 samples) demonstrated limited 

improvements. Gradient Boosting models maintained 

96.17% accuracy under aggressive pruning, showing greater 

resilience than Random Forest, though the latter achieved 

larger inference time reductions (37.97% through pruning). 

 

The primary contribution lies in demonstrating Green 

AI feasibility for tree-based ensembles on standard CPU 

hardware, extending beyond previous neural network focused 
research. The comprehensive lifecycle emissions 

quantification provides actionable insights for organizations 

seeking to reduce their machine learning carbon footprint 

without sophisticated infrastructure. 

 

 Limitations 

Several limitations constrain the generalizability of 

these findings. The study evaluated only two ensemble 

methods on three datasets, which may not represent the full 

spectrum of machine learning applications. The compression 

techniques implemented involved structural modifications 
rather than true numerical precision reduction, as sklearn 

lacks native support for int8 or float16 representations. More 

aggressive pruning techniques could yield greater efficiency 

gains than those observed. 

 

The carbon emissions calculations relied on average US 

power grid intensity (385.7 g CO2/kWh), which varies 

significantly by region and energy source. Data centers 

utilizing renewable energy would show different absolute 

emissions, though relative improvements would remain 

consistent. The single random seed approach ensures 

reproducibility but may not capture variance in compression 
effectiveness across different initializations. 

 

The study excluded Decision Trees, XGBoost, and 

LightGBM due to implementation challenges, limiting the 

comprehensiveness of the analysis. Additionally, the CPU 

only evaluation may not reflect GPU accelerated production 

environments where compression benefits could differ 

substantially. Modern GPUs optimize for parallel 

computation, potentially reducing the relative advantages of 

model compression. 

 
The experimental design did not account for data 

preprocessing energy costs or hyperparameter tuning 

overhead, which could represent significant portions of the 

total carbon footprint in real deployments. The inference time 

measurements assumed batch prediction scenarios and may 

not accurately represent online serving latencies where 

individual predictions are required. 
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The exclusion of modern gradient boosting 

implementations (XGBoost, LightGBM, CatBoost) 

represents a significant limitation, as these frameworks 

dominate production deployments for tabular data. 

LightGBM, in particular, includes native efficiency 

optimizations that may reduce or eliminate the need for post-

training compression. Future work should compare our 

compression techniques against these optimized 
implementations to establish whether additional compression 

provides meaningful benefits beyond built-in optimizations. 

 

B. Recommendations 

 

 Practical Implementation 

Organizations should integrate compression analysis 

into model development pipelines, beginning with baseline 

establishment followed by incremental compression to 

identify optimal trade offs. Dataset size should guide strategy 

selection, with aggressive compression suitable for datasets 

exceeding 10,000 samples while smaller datasets require 
careful evaluation. 

 

For production deployment, staged rollout strategies are 

recommended, initially running compressed models in 

parallel with baselines to validate real world performance. 

Edge computing applications represent ideal scenarios for 

compressed models, where 54% size reduction and 38% 

speed improvement enable deployment on resource limited 

devices. 

 

Model selection should consider compression 
compatibility alongside baseline performance. Gradient 

Boosting offers stability for applications requiring consistent 

performance guarantees, while Random Forest provides 

greater efficiency gains for severely constrained 

environments. 

 

 Future Research Directions 

Further investigation should explore compression 

techniques for other ensemble methods including Extra Trees, 

AdaBoost, and CatBoost. The unexpected performance 

improvements on imbalanced datasets warrant dedicated 

study to understand mechanisms through which compression 
enhances minority class detection. 

 

Integration of numerical precision reduction with 

structural compression could yield multiplicative efficiency 

gains beyond those observed. Development of adaptive 

compression strategies that automatically adjust parameters 

based on dataset characteristics would eliminate manual 

tuning requirements and ensure consistent benefits across 

applications. 

 

Compression aware training procedures that anticipate 
post training modifications might maintain higher accuracy 

under aggressive compression. Longitudinal studies 

examining compressed model behavior over extended 

deployments would provide insights into stability and drift 

characteristics essential for production maintenance 

schedules. 

 

Extension to distributed and federated learning 

scenarios could multiply efficiency benefits through reduced 

communication overhead. Establishing standardized 

benchmarks for Green AI evaluation, including common 

datasets and metrics specifically designed for environmental 

impact assessment, would facilitate systematic advancement 

of sustainable machine learning practices. 

 
The development of hardware specific compression 

strategies could optimize efficiency gains for particular 

deployment targets. Investigation of the relationship between 

ensemble diversity and compression effectiveness might 

reveal principled approaches for selecting trees or estimators 

for removal. 

 

These recommendations provide a foundation for 

advancing Green AI implementation while acknowledging 

the constraints and opportunities identified through this 

research. The balance between computational efficiency and 

predictive performance remains context dependent, requiring 
careful consideration of specific deployment requirements 

and environmental objectives. 
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