
Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3894

Enhancing 6G Network Security with Elliptic

Curve Cryptography

Jury O. Balgoon1; Kulud H.Ma Chung2; Latifah M.Alharthi3

1,2,3 Dept. of Computer Engineering Taif University, KSA

Publication Date: 2025/09/06

Abstract: With a rapid influx of endeavors into the sixth-generation (6G) wireless realm, network security is becoming of

paramount importance. This work investigates strategies to couple Elliptic Curve Cryptography (ECC) with potentially

reinforcing the existing 6G security architecture. ECC constitutes a highly secure and efficient key exchange and

authentication mechanism, requiring much smaller keys for excellent-level encryption. With such properties, ECC fits very

well in the resource-constrained environments envisioned with 6G, such as the Internet of Things (IoT) ecosystem and smart

home applications. With the active consideration of performance, scalability, and lightweight communication security, ECC-

based strategies will render the required protection against adversarial attacks in high-speed and high-density networks.

The strengths of ECC in securing communication, protecting user data, and ensuring privacy in multiple 6G applications

have been elucidated in this paper.

Keywords: 6G Security, 6G Protection, Anomaly Detection, Threat Forecasting.

How to Cite: Jury O. Balgoon; Kulud H. Ma Chung; Latifah M. Alharthi (2025). Enhancing 6G Network Security with Elliptic

Curve Cryptography. International Journal of Innovative Science and Research Technology, 10(7), 3894-3901.

 https://doi.org/10.38124/ijisrt/25jul1664

I. INTRODUCTION

With 5G specs still under construction and coverage

not nearing completion, the concept of sixth-generation (6G)

mobile communication is pacing in the shadows. The

overriding factor driving this change is how telecom

networks are already endowed with some level of

interconnected intelligence, which is now enhanced by the

new AI [1].

The ethical impact of 6 G on wireless connectivity

demands high-level security for network operations.

Little literature precisely focuses on the security and

privacy aspects of 6G networks, and a set of standard features

and standards for 6G is still to be settled. This article

emphasizes the importance of further research in this area and

outlines the possible security consequences of the foreseen

6G wireless technologies and potential countermeasures.

As the more advanced mobile broadband (FeMBB)

brings about extreme data rates, processing will be quite

difficult regarding security-related traffic detection of attacks,

AI/ML pipeline use, traffic analysis, and ubiquitous

encryption. To decrease this inappropriate use, distributed

security solutions should come into play because traffic has

to be treated locally and dynamically through various

operational segments of the network, starting from the edge

infrastructure to the core service cloud [2].

Softwarization and virtualization of network services

are the most important aspects of developing new generation

(5G and 6G) networks, which have been helping to serve

various businesses on the same shared physical space and

resources. Multi-tenancy, the term used to refer to these

possibilities of sharing, enables this.

The use of Internet of Things (IoT) devices increases

by leaps and bounds and is expected to rise further. With 6 G

knocking at the door and promising to speed things up like

never before, lower latency, and an unusual amount of

devices connected, the heightened security concern over IoT

devices will seem far more justified [4]. Kaspersky, by stating

that one troubling research question remains about whether it

should come first in protecting IoT devices themselves or

networks from IoT device attacks, this issue will not be

resolved soon [5].

A project analyzes how Elliptic Curve Cryptography

(ECC)—a cryptographic scheme—can be applied to the

encryption and decryption of data flow through 6G networks.

The ECC works on the concept of curve complexity and also

on the algebraic structure of finite elliptic curves. Most of its

attributes correspond to the asymmetric parts of

cryptosystems, namely key exchange, digital signatures, and

encryption[6].

Elliptic Curve Cryptography (ECC) is useful for

digital signatures, encryption, and authentication, among

other crucial security tasks. ECC creates keys based on

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25jul1664

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3895

properties of the elliptic curve equation rather than the

conventional approach of factoring huge prime numbers.

The research's main contribution is the design,

prototype, and unmanned protection of an end-to-end data

exchange in the 6G-IoT infrastructure against several attacks,

such as DDoS attacks using ECC. This study produces the

following new and important contributions.

II. RELATED WORKS

The authors of [7] proposed a framework that discerns

potentially infected Internet of Things (IoT) devices in a

botnet under the detection of malicious traffic at the edge

layer of IoT. The analysis is performed by recomputing the

threshold of the decision point relevant to traffic

classification using Sparsity Representation and

Reconstruction Error Threshold methods. The computation

of the threshold error only considers benign traffic data, while

the training of the machine learning models is performed on

an NB-IoT dataset. However, the applicability of this

framework has not yet been verified at all levels of the 5G/6G

architecture, and its viability in specific settings involving

multiple stakeholders has not been evaluated either.

Additionally, the authors do not consider classifying 5G and

6G traffic; these, therefore, depend on the validation of the

approach.

An entropy-based DDoS detection system for

Software-Defined Networking (SDN) attacks is proposed in

[8], using a hybrid two-level detection methodology that

relies on information entropy combined with deep learning

methods. With relatively coarse granularity, the first level

does an entropy-based detection mechanism to identify

suspicious ports and components. The second level does a

fine-level detection of legitimate versus suspect traffic by

using a Convolutional Neural Network (CNN) model for

packet classification. Ultimately, the controller is responsible

for stopping the attack by forcing AI agents to stop it.

The authors have defined a restriction on Subscriber

Concealed Identifiers (SUCI) in [9] in the context of

cryptography, more so in the post-quantum 6G era. The

authors formulated an SUCI for securing SIM cards based on

the NIST-declared post-quantum Key Encapsulation

Mechanisms (KEM) standard. Solutions are emphasized as

potential safeguards against quantum attacks.

Article [10], discussing IoT in the 4G and 5G

networks, proposes a method to identify those IoT devices at

risk of infection. The attack is mitigated by putting the traffic

from these devices in quarantine on a Network Slice (NS)

specifically for this purpose. The quarantined traffic is

thoroughly examined to determine the status of being

malicious. Detection is performed by an application running

on the SDN controller; changing numbers of flows in the

quarantine, NS, causes the application to produce an updated

distrust threshold. In contrast, our approach focuses on the

collaboration of the entire infrastructure for protection, while

this work focuses on ISPs with no mitigation in the DSP.

III. PROPOSED SOLUTION

Elliptic Curve Cryptography must be integral to the 6

G security architecture to respond to unforeseen demand

requirements with respect to speed, low latency, and

connectivity of a massive number of devices. However, with

considerably smaller key sizes and equally high security

compared to traditional systems such as RSA, ECC becomes

convenient even in resource-constrained environments

peculiar to 6G, particularly in IoT devices, autonomous

systems, and real-time AI communications. The implications

for ECC technology in the security attributes of 6 G will be

enhanced data protection, network performance

improvement, and resource conservation.

In a 6G scenario, ECC may be deployed to secure

device authentication via methods such as ECDSA, provide

fast and efficient protocols for key exchange like ECDH, and

enable encryption of sensitive data traveling in ultra-fast

networks, with lightweight features offered by ECC itself.

Thus, ECC lessens the computational overhead requirements

for quick processing and lower power; this is critical for

mobile and edge devices operating in a 6G environment.

Security within decentralized systems like blockchain

networks and federated AI models expected to underpin

many applications in 6G relies on ECC. However, that can be

an assured long-term security base by combining ECC with

post-quantum cryptographic methods because of the

impending quantum computing threat. Choosing an

appropriate hardware implementation with standard curve

selection must avoid vulnerabilities such as side-channel

attacks and ensure global interoperability across 6G

infrastructures. Thus, ECC is foundational in building secure,

scalable, and future-resilient 6G systems.

The first step to implement ECC for securing 6G

networks is to select standard and secure elliptic curves, such

as Curve25519 or NIST P-256, for interoperability and

hardened cryptographic bases. Each device must obtain a

unique ECC key pair at manufacturing or onboarding, ideally

through secure hardware modules (such as TPMs or secure

enclaves). Under ECDSA use, devices will be authenticated

by verifying their digital signatures against a trusted

certificate authority (CA) during registration or attaching to a

network.

The ECDH key exchange must be implemented in the

session layer, allowing the devices to derive shared

symmetric keys without exposing their private keys and

ensuring confidentiality and integrity in communications.

Base stations and end devices must be incorporated with

lightweight ECC libraries optimized for mobile and IoT

environments, thus consuming as little computational and

energy resources as possible. Hybrid encryption models

could also be established where the session keys derived from

ECC begin/coalesce symmetric encryption, such as AES, to

facilitate data transfer.

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3896

ECC operations must also be shielded against side-

channel attacks using hardware-level defenses such as

constant-time algorithms and fault detection.

IV. EXPERIMENTS AND RESULTS

Our proposed model has the following implementation

steps. First, we select standardized and secure elliptic curves,

namely Brainpool, NIST P-256, or Curve25519, and we

avoid weak or deprecated curves. Second, we securely

generate ECC private/public key pairs for device

manufacturing or onboarding. Private keys must be kept in

secure hardware, such as TPMs, Secure Enclaves, or

dedicated chips for cryptography.

Then, we must set up a Trusted Certification Authority

(CA) that issues digital certificates binding device identities

to their ECC public keys. The devices must trust this CA to

validate each other's certificates. Next, authentication is done

using ECC, namely ECDSA, where ECDSA signatures are

used every time the device enrolls or moves around the 6G

network. The network checks the signature against the stored

public key to identify the entity.

In addition, ECC Key Exchange (ECDH) is fast and

allows secure key exchanges between network nodes and

devices. This means symmetric keys are derived for

encrypted session operations with AES encryption. Next,

those lightweight ECC libraries like WolfSSL or micro-ecc

will be targeted for specialized optimization design in 6G

hardware, concerning ECC algorithm optimization for

hardware and implementing countermeasures against side-

channel attacks like constant-time computation next-before.

Secure and Encrypt Data. Messages exchange during

a key exchange can also use the symmetric keys to secure

signaling messages, data packets, control planes, and user

sessions. They can also be applied to secure end-to-end

encryption of data in transit.

An ECC private key and an ECC public key are

generated for ECC. The private keys in ECC are integers,

commonly in the range of 256 bits. The random integer

chosen from the range defined on the elliptic curve generates

the key in ECC cryptography. The whole set of random

integers within the range is a private key in ECC.

Public keys within ECC represent points on a curve as

pairs of integer coordinates {x, y}. The unique property of EC

points is that they can be compressed to one coordinate + 1

bit (even or odd). Consequently, the compressed public key

consists of a 257-bit integer corresponding to a 256-bit ECC

private key.

The equation describes the elliptic curves, which are

flat algebraic curves made up of all points {x, y}:

A x3 + B x2 y + C x y2 + D y3 + E x2 + F x y + G y2 + H x +

I y + J = 0

The simplified version of elliptic curves used in ECC

cryptography, known as the Weierstras form[6], is described

as:

y2 = x3 + ax + b

For instance, an elliptic curve of the following shape

serves as the basis for the NIST curve secp256k1 (used in

Bitcoin):

y2 = x3 + 2 (the above elliptic curve equation, where a

= 0 and b = 2)

Fig 1 Elliptic Curve Equation

ECC employs elliptic curves over the finite field [11-

12] F2m (where the field size is p = 2m) or Fp (where p is

prime and p > 3). As a result, the field is a square matrix of

size p x p, and the curve's points can only be integer positions

inside the field. Every algebraic operation in the same field

yields a different point in that field. Thus, the following is the

representation of the elliptic curve equation over the finite

field Fp:

y2 ≡ x3 + ax + b (mod p)

For instance, the "Bitcoin curve" (secp256k1) uses an

elliptic curve over the finite field F17:

y2 ≡ x3 + 7 (mod p)

This section describes how to use public-key

encryption and decryption based on elliptic curves. Assume

that you have an ECC private-public key pair and that you

must use it to encrypt and decode data. According to the

definition, this rule governs how asymmetric encryption

operates. Figure 2 shows that if data is encrypted using a

private key, the corresponding public key can later decipher

the ciphertext.

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3897

Fig 2 Asymmetric Encryption Process

The RSA cryptosystem can use the aforementioned

procedure, however the ECC cannot. The encryption

mechanism is not directly provided by elliptic curve

cryptography (ECC). In order to create a shared secret key for

symmetric data encryption and decryption, this study

suggested designing a hybrid encryption system employing

the ECDH (Elliptic Curve Diffie–Hellman) key exchange

scheme.

Using the tinyec library, the Python code creates an

ECC private-public key pair for the recipient of the message

(based on the brainpoolP256r1 curve). It then uses the

recipient's public key to generate an ephemeral ciphertext

public key (for ECDH) and a secret shared key (for

encryption). Later, it uses the recipient's private key and the

previously generated ephemeral ciphertext public key to

generate the same secret shared key (for decryption). This is

the output of the code shown above:

 Private Key:

0x5c47513f125a733a019060adc831b0e0cbd476dd63724db

61b33eec9fa9516f9

 Public Key:

0x56f1932b33181ce1da84075e49432806d21debe339

64fa13ae139038eaf4d84d0

 Ciphertext Pubkey:

0x9de17a915b9e23ab94e88e411cf87351cc800e5574

32e10c3c91d6dcd62075751

 Encryption Key:

0x35e01f2af3d22ee83cce16c0a4f632ae34a2ccd8267

5073ca5cfee95168f794a1

 Decryption Key:

0x35e01f2af3d22ee83cce16c0a4f632ae34a2ccd8267

5073ca5cfee95168f794a1

The output makes it evident that the decryption key,

which is generated from the matching private key, and the

encryption key, which is derived from the public key, are

identical.

In an integrated encryption scheme, these keys will be

utilized for both data encryption and decryption. If you run

the code, the result above will differ since ciphertextPrivKey

is generated randomly, but the encryption and decryption

keys (the ECDH shared secret) will always be the same.

Using a symmetric encryption system such as AES-

GCM, the secret key is utilized for symmetric data encryption

once it is available. Let's put into practice a fully functional

hybrid technique for asymmetric ECC encryption and

decryption. The AES authenticated symmetric cipher and the

brainpoolP256r1 curve will serve as its foundation.

Using the tinyec library, the preceding example begins

by creating an ECC keys pair for the message recipient:

pubKey + privKey. Using the hybrid encryption strategy

(asymmetric ECC + symmetric AES), these keys will be used

to encrypt the message (for example, the user password) and

subsequently decrypt it back to its original form.

Next, use the pubKey to encrypt the message. The

output will look like this: { ciphertext, nonce, authTag,

ciphertextPubKey }. Symmetric AES encryption yields the

ciphertext, nonce (random AES initialization vector), and

authTag (the encrypted text's MAC code, as determined by

the GCM block mode).

In order to retrieve the AES symmetric key during the

decryption process, it is also necessary to collect a randomly

generated public key, ciphertextPubKey, which will be

contained in the encrypted message.

Together with the decryption privateKey, the data

generated during encryption—which looks like this: {

ciphertext, nonce, authTag, ciphertextPubKey }—is used to

decrypt the encrypted communication. The decrypted

plaintext message is the end result.

Internally, the encrypt_ECC(msg, pubKey) function

computes the symmetric encryption shared ECC key

sharedECCKey = ciphertextPrivKey * pubKey after first

creating an ephemeral ECC key-pair for the ciphertext. Since

this key is an EC point, its x and y coordinates are hashed to

convert it to a 256-bit AES secret key (integer).

Lastly, using the 256-bit shared secret key secretKey,

the AES cipher (from Pycryptodome) encrypts the message

and outputs {ciphertext, nonce, authTag}.

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3898

The symmetric encryption shared ECC key

sharedECCKey = privKey * ciphertextPubKey is initially

determined internally by the decrypt ECC

(encryptedMsg{ciphertext, nonce, authTag,

ciphertextPubKey}, privKey) function.

Since it is an EC point, the x and y coordinates of the

point were first hashed to convert it to a 256-bit AES secret

key. The 256-bit shared secret key secretKey is then used to

decrypt the {ciphertext, nonce, authTag} using the AES

cipher. The original plaintext message is the output that is

generated. The following is the outcome of the code

mentioned above:

original msg: b'Text to be encrypted by ECC public

key and decrypted by its corresponding ECC private key'

 Encrypted Msg: {'Ciphertext':

b'6c0c9051c90e3247c31b5165d1a3d101c4bfd2454ca

395e2586b0f3abde2741c8ae0a6b8d027ef8cc4f841dc88037e

3c69209354dff8d6c36dd1dccaee1906d063b80cedb50597a5

564815eca557caa090acae0c4a1cdcd06f', 'nonce':

b'd04a25533676bfdd085c8864d2ecb17e', 'authTag':

b'd0514a9709f3d5d20319b15db0532e20',

 'Ciphertextpubkey':

'0x5afb37a10e972ad4c8aca946106a1ab93badd70b9d

bba74fba19d8d293f0d9221'}

decrypted msg: b'Text to be encrypted by ECC public

key and decrypted by its corresponding ECC private key'

In an e-learning environment, the data that is

transferred is expressed in JSON format. It can be encrypted

and decrypted using the previously described manner and is

handled as plain text.

Fog computing is used to solve latency problems that

may arise while utilizing ECC cryptography to protect user

authentication and e-learning resources. However, over a

limited time, fog computing fully synchronizes with the

cloud.

 Comparison Between ECC and RSA:

One viable asymmetric-key cryptosystem is rival

Shamir Adleman (RSA) [13]. The de facto standard for

public-key cryptography is established. Its security falls

within the challenge of integer factorization. RSA's

encryption method is more efficient than its decoding

method. Numerous scholars have suggested using the

Chinese Remainder Theorem (CRT) to increase the

decryption efficiency of RSA. Verma et al. [14] suggested a

model to use CRT to speed up the RSA's decryption time.

Additionally, they suggested using a matrix with a small

order to generate cryptographic keys and huge modulus.

Larger key sizes are necessary for improved and more

robust data protection, which puts additional strain on

computer systems.

Three sample data inputs of 8 bits, 64 bits, and 256

bits, along with random private keys in accordance with

NIST's standard, were used to test RSA and ECC for

information security [15]. The Python tests are conducted on

an Intel Pentium dual-core CPU running on the Microsoft

Windows platform (2.60 GHz, 533 MHz, 1 MB L2 cache)

with 8GB DDR4 RAM.

Table 1 Key 8 Bits – Encryption, Decryption and Total Time (in Seconds) [6]

Security

Bit Level

Encryption Time (s) Decryption Time (s) Total Time

ECC RSA ECC RSA ECC RSA

80 0.4885 0.0307 1.3267 0.7543 1.8152 0.785

112 2.203 0.0299 1.5863 2.7075 3.7893 2.7375

128 3.8763 0.0305 1.769 6.9409 5.6453 6.9714

144 4.7266 0.0489 2.0022 13.6472 6.7288 13.6962

Fig 3 Encryption / Decryption Using Key 8 Bits[6]

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3899

When utilizing key 8 bits, ECC's encryption time is longer than RSA's in Figure 3, but ECC's decryption time is shorter.

Nevertheless, ECC takes less time to encrypt and decrypt than RSA.

Table 2 Key 64 Bits – Encryption, Decryption and Total Time (in Seconds) [6]

Security

Bit Level

Encryption Time (s) Decryption Time (s) Total Time

ECC RSA ECC RSA ECC RSA

80 2.1685 0.1366 5.9099 5.5372 8.0784 5.6738

112 9.9855 0.1635 6.9333 20.4108 16.9188 20.5743

128 15.0882 0.1672 7.3584 46.4782 22.4466 46.6454

144 20.2308 0.1385 8.4785 77.7642 28.7093 77.9027

Fig 4 Encryption / Decryption Using Key 64 Bits[6]

Figure 4 shows how to use a 64-bit key for encryption and decryption. RSA encryption takes longer than ECC encryption,

but ECC encryption takes less time to decrypt than RSA encryption, which intersects with the overall RSA encryption/decryption

time. ECC takes significantly less time overall than RSA.

Table 3 Key 256 Bits – Encryption, Decryption and Total Time (in Seconds) [6]

Security

Bit Level

Encryption Time (s) Decryption Time (s) Total Time

ECC RSA ECC RSA ECC RSA

80 7.9240 0.5596 22.8851 19.3177 30.8091 19.8772

112 39.7008 0.5815 26.3331 102.0337 66.0339 102.6153

128 58.4386 0.5611 27.4060 209.6086 85.8446 210.1697

144 77.5034 0.5718 32.1522 311.0649 109.6556 311.6368

V. CONCLUSION

In conclusion, ECC integration can provide an

effective and reliable solution against the challenging

demands expected to arise in wireless communication shortly

in 6G environments. With its small key size, fast processing

ability, and battery conservation within devices, ECC will

serve as the appropriate design to safeguard extensive device

interconnectivity and sensitive information flows projected in

6G environments.

By combining ECC authentication, key exchange, and

encryption with secure hardware implementations, robust

end-to-end security can be obtained in 6G networks while

allowing for ultra-low latency and reliability needed for the

next-generation application. However, successful

deployment will demand perfect adherence to cryptographic

best practices, careful standardization, and continuous

security assessments that help alleviate the range of attacks

that may arise. Thus, ECC will be a central mast on which the

security, scalability, and resilience of a 6G future will hinge.

Securing these networks has become paramount with

the rise of 6G networks and their demand for the highest

possible connectivity, fastest possible speed, and astute

management. The answers are offered by the newly adapted

concept of Elliptic Curve Cryptography, which is believed to

give strong security assurances while using minimal

computational and energy resources. This fits in with the

application range of diverse and resource-poor devices that

would populate the ecosystems of 6G.

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3900

6G systems can build trust, privacy, and integrity on

secure ECC-based authentication, key exchange, lightweight

encryption, robust hardware protection. Nevertheless,

continuous innovations and monitoring and strict compliance

with globally accepted cryptographic standards will remain

central to the best defenses against the threats raised, ensuring

that ECC will always be a platform for secure 6G deployment

in the coming years.

Fig 5 Encryption / Decryption Using Key 256 Bits[6]

In Figure 5, ECC encryption is higher than RSA

encryption, but ECC decryption is lower than RSA

decryption. ECC encryption and decryption use less time

overall than RSA encryption and decryption.

According to earlier findings, ECC is more efficient

than RSA. Experiments and the findings show that ECC is

slow at encryption but very effective at decryption, while

RSA is very effective at encryption but slow at decryption.

ECC is more secure and efficient overall than RSA, albeit

[15, 16, 17].

However, the encryption/decryption procedure for

RSA is longer than for ECC as the key size increases. In the

encryption/decryption process, key size matters. When

employing a large value key, such as 256 bits, ECC performs

better than RSA.

 Elliptic Curve Cryptography Offers Several Benefits Over

RSA Certificates:

Increased security. Even though RSA is impenetrable

right now, experts think ECC will be more resilient to attacks

in the future. Therefore, employing ECC could provide you

with increased security down the road. Increased

effectiveness. Your website may lag if you use huge RSA

keys because they require a lot of processing power to encrypt

and decrypt data. On the other hand, ECC can scale up more

effectively without using significant computer power.

Complete confidentiality. Put simply, this means that

even in the event that the private key is compromised, the

session keys—which are actually used to encrypt the data

transferred between the user and the server—remain safe. If

a website is being monitored by outside parties, this could be

helpful.

REFERENCES

[1]. C. de Alwis, A. Kalla, Q. V. Pham, P. Kumar, K. Dev,

W. J. Hwang, and M. Liyanage, "Survey on 6G

Frontiers: Trends, Applications, Requirements,

Technologies, and Future Research," IEEE Open

Journal of the Communications Society, pp. 1–1, 2021.

[2]. G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, "6G:

Opening new horizons for integration of comfort,

security, and intelligence," IEEE Wireless

Communications, 2020.

[3]. McKinsey&Company, The road to 5G: The inevitable

growth of infrastructure cost,

https://www.mckinsey.com/industries/technology-

media and-telecommunications/our-insights/the-road-

to-5g-the-inevitable-growth-of infrastructure-cost.

[4]. Lionel Sujay Vailshery, Global IoT market size,

https://www.statista.com/ statistics/976313/global-iot-

market-size/.

[5]. Nikolay Pankov, Protect networked IoT devices or

protect the network from IoT devices?

https://www.kaspersky.com/blog/rsa2021-dangerous-

iot/40161/.

[6]. El Sayed Amer, M.S.M., El Hefnawy, N., Mohamed

Abdual-Kader, H. (2024). "Enhance Fog-Based E-

learning System Security Using Elliptic Curve

Cryptography (ECC) and SQL Database."

International Conference on Innovative Computing

and Communications. ICICC 2023. Lecture Notes in

Networks and Systems, vol 731. Springer, Singapore.

https://doi.org/10.1007/978-981-99-4071-4_34.

[7]. Christos Tzagkarakis, Nikolaos Petroulakis, Sotiris

Ioannidis, Botnet attack detection at the IoT edge

based on sparse representation, in: 2019 Global IoT

Summit, GIoTS, 2019, pp. 1–6,

http://dx.doi.org/10.1109/GIOTS.2019.8766388.

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/
http://dx.doi.org/10.1109/GIOTS.2019.8766388

Volume 10, Issue 7, July – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25jul1664

IJISRT25JUL1664 www.ijisrt.com 3901

[8]. Ying Liu, Ting Zhi, Ming Shen, Lu Wang, Yikun Li,

Ming Wan, Software-defined DDoS detection with

information entropy analysis and optimized deep

learning, Future Gener. Comput. Syst. 129 (2022) 99–

114, http://dx.doi.org/10.1016/j. future.2021.11.009.

[9]. Ulitzsch, V.Q.; Park, S.; Marzougui, S.; Seifert, J.-P.

A Post-Quantum Secure Subscription Concealed

Identifier for 6G. In Proceedings of the 15th ACM

Conference on Security and Privacy in Wireless and

Mobile Networks, San Antonio, TX, USA, 16–19 May

2022; pp. 157–168.

[10]. David Candal-Ventureira, Pablo Fondo-Ferreiro,

Felipe Gil-Castiñeira, Fran cisco Castaño,

Quarantining malicious IoT devices in intelligent

sliced mobile networks, Sensors (Basel, Switzerland)

20 (2020) http://dx.doi.org/10.3390/ s20185054.

[11]. W. H. Bussey (1910) "Tables of Galois fields of order

< 1000", Bulletin of the American Mathematical

Society 16(4): 188–206, doi:10.1090/S0002-9904-

1910-01888-7.

[12]. Mullen, Gary L.; Mummert, Carl (2007), Finite Fields

and Applications I, Student Mathematical Library

(AMS), ISBN 978-0-8218-4418-2.

https://doi.org/10.38124/ijisrt/25jul1664
http://www.ijisrt.com/

