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Abstract: With a rapid influx of endeavors into the sixth-generation (6G) wireless realm, network security is becoming of 

paramount importance. This work investigates strategies to couple Elliptic Curve Cryptography (ECC) with potentially 

reinforcing the existing 6G security architecture. ECC constitutes a highly secure and efficient key exchange and 

authentication mechanism, requiring much smaller keys for excellent-level encryption. With such properties, ECC fits very 

well in the resource-constrained environments envisioned with 6G, such as the Internet of Things (IoT) ecosystem and smart 

home applications. With the active consideration of performance, scalability, and lightweight communication security, ECC-

based strategies will render the required protection against adversarial attacks in high-speed and high-density networks. 

The strengths of ECC in securing communication, protecting user data, and ensuring privacy in multiple 6G applications 

have been elucidated in this paper. 
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I. INTRODUCTION 

 

With 5G specs still under construction and coverage 

not nearing completion, the concept of sixth-generation (6G) 

mobile communication is pacing in the shadows. The 

overriding factor driving this change is how telecom 

networks are already endowed with some level of 

interconnected intelligence, which is now enhanced by the 

new AI [1].  

 

The ethical impact of 6 G on wireless connectivity 

demands high-level security for network operations. 

 

Little literature precisely focuses on the security and 

privacy aspects of 6G networks, and a set of standard features 

and standards for 6G is still to be settled. This article 

emphasizes the importance of further research in this area and 

outlines the possible security consequences of the foreseen 

6G wireless technologies and potential countermeasures. 

 

As the more advanced mobile broadband (FeMBB) 

brings about extreme data rates, processing will be quite 

difficult regarding security-related traffic detection of attacks, 

AI/ML pipeline use, traffic analysis, and ubiquitous 

encryption. To decrease this inappropriate use, distributed 

security solutions should come into play because traffic has 

to be treated locally and dynamically through various 

operational segments of the network, starting from the edge 

infrastructure to the core service cloud [2].  

Softwarization and virtualization of network services 

are the most important aspects of developing new generation 

(5G and 6G) networks, which have been helping to serve 

various businesses on the same shared physical space and 

resources. Multi-tenancy, the term used to refer to these 

possibilities of sharing, enables this.  

 

The use of Internet of Things (IoT) devices increases 

by leaps and bounds and is expected to rise further. With 6 G 

knocking at the door and promising to speed things up like 

never before, lower latency, and an unusual amount of 

devices connected, the heightened security concern over IoT 

devices will seem far more justified [4]. Kaspersky, by stating 

that one troubling research question remains about whether it 

should come first in protecting IoT devices themselves or 

networks from IoT device attacks, this issue will not be 

resolved soon [5]. 

 

A project analyzes how Elliptic Curve Cryptography 

(ECC)—a cryptographic scheme—can be applied to the 

encryption and decryption of data flow through 6G networks. 

The ECC works on the concept of curve complexity and also 

on the algebraic structure of finite elliptic curves. Most of its 

attributes correspond to the asymmetric parts of 

cryptosystems, namely key exchange, digital signatures, and 

encryption[6]. 

 

Elliptic Curve Cryptography (ECC) is useful for 

digital signatures, encryption, and authentication, among 

other crucial security tasks. ECC creates keys based on 
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properties of the elliptic curve equation rather than the 

conventional approach of factoring huge prime numbers.  

 

The research's main contribution is the design, 

prototype, and unmanned protection of an end-to-end data 

exchange in the 6G-IoT infrastructure against several attacks, 

such as DDoS attacks using ECC. This study produces the 

following new and important contributions. 

 

II. RELATED WORKS 

 

The authors of [7] proposed a framework that discerns 

potentially infected Internet of Things (IoT) devices in a 

botnet under the detection of malicious traffic at the edge 

layer of IoT. The analysis is performed by recomputing the 

threshold of the decision point relevant to traffic 

classification using Sparsity Representation and 

Reconstruction Error Threshold methods. The computation 

of the threshold error only considers benign traffic data, while 

the training of the machine learning models is performed on 

an NB-IoT dataset. However, the applicability of this 

framework has not yet been verified at all levels of the 5G/6G 

architecture, and its viability in specific settings involving 

multiple stakeholders has not been evaluated either. 

Additionally, the authors do not consider classifying 5G and 

6G traffic; these, therefore, depend on the validation of the 

approach. 

 

An entropy-based DDoS detection system for 

Software-Defined Networking (SDN) attacks is proposed in 

[8], using a hybrid two-level detection methodology that 

relies on information entropy combined with deep learning 

methods. With relatively coarse granularity, the first level 

does an entropy-based detection mechanism to identify 

suspicious ports and components. The second level does a 

fine-level detection of legitimate versus suspect traffic by 

using a Convolutional Neural Network (CNN) model for 

packet classification. Ultimately, the controller is responsible 

for stopping the attack by forcing AI agents to stop it. 

 

The authors have defined a restriction on Subscriber 

Concealed Identifiers (SUCI) in [9] in the context of 

cryptography, more so in the post-quantum 6G era. The 

authors formulated an SUCI for securing SIM cards based on 

the NIST-declared post-quantum Key Encapsulation 

Mechanisms (KEM) standard. Solutions are emphasized as 

potential safeguards against quantum attacks. 

 

Article [10], discussing IoT in the 4G and 5G 

networks, proposes a method to identify those IoT devices at 

risk of infection. The attack is mitigated by putting the traffic 

from these devices in quarantine on a Network Slice (NS) 

specifically for this purpose. The quarantined traffic is 

thoroughly examined to determine the status of being 

malicious. Detection is performed by an application running 

on the SDN controller; changing numbers of flows in the 

quarantine, NS, causes the application to produce an updated 

distrust threshold. In contrast, our approach focuses on the 

collaboration of the entire infrastructure for protection, while 

this work focuses on ISPs with no mitigation in the DSP. 

 

III. PROPOSED SOLUTION 

 

Elliptic Curve Cryptography must be integral to the 6 

G security architecture to respond to unforeseen demand 

requirements with respect to speed, low latency, and 

connectivity of a massive number of devices. However, with 

considerably smaller key sizes and equally high security 

compared to traditional systems such as RSA, ECC becomes 

convenient even in resource-constrained environments 

peculiar to 6G, particularly in IoT devices, autonomous 

systems, and real-time AI communications. The implications 

for ECC technology in the security attributes of 6 G will be 

enhanced data protection, network performance 

improvement, and resource conservation.  

 

In a 6G scenario, ECC may be deployed to secure 

device authentication via methods such as ECDSA, provide 

fast and efficient protocols for key exchange like ECDH, and 

enable encryption of sensitive data traveling in ultra-fast 

networks, with lightweight features offered by ECC itself. 

Thus, ECC lessens the computational overhead requirements 

for quick processing and lower power; this is critical for 

mobile and edge devices operating in a 6G environment. 

 

Security within decentralized systems like blockchain 

networks and federated AI models expected to underpin 

many applications in 6G relies on ECC. However, that can be 

an assured long-term security base by combining ECC with 

post-quantum cryptographic methods because of the 

impending quantum computing threat. Choosing an 

appropriate hardware implementation with standard curve 

selection must avoid vulnerabilities such as side-channel 

attacks and ensure global interoperability across 6G 

infrastructures. Thus, ECC is foundational in building secure, 

scalable, and future-resilient 6G systems.  

 

The first step to implement ECC for securing 6G 

networks is to select standard and secure elliptic curves, such 

as Curve25519 or NIST P-256, for interoperability and 

hardened cryptographic bases. Each device must obtain a 

unique ECC key pair at manufacturing or onboarding, ideally 

through secure hardware modules (such as TPMs or secure 

enclaves). Under ECDSA use, devices will be authenticated 

by verifying their digital signatures against a trusted 

certificate authority (CA) during registration or attaching to a 

network. 

 

The ECDH key exchange must be implemented in the 

session layer, allowing the devices to derive shared 

symmetric keys without exposing their private keys and 

ensuring confidentiality and integrity in communications. 

Base stations and end devices must be incorporated with 

lightweight ECC libraries optimized for mobile and IoT 

environments, thus consuming as little computational and 

energy resources as possible. Hybrid encryption models 

could also be established where the session keys derived from 

ECC begin/coalesce symmetric encryption, such as AES, to 

facilitate data transfer.  
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ECC operations must also be shielded against side-

channel attacks using hardware-level defenses such as 

constant-time algorithms and fault detection. 

 

IV. EXPERIMENTS AND RESULTS 

 

Our proposed model has the following implementation 

steps. First, we select standardized and secure elliptic curves, 

namely Brainpool, NIST P-256, or Curve25519, and we 

avoid weak or deprecated curves. Second, we securely 

generate ECC private/public key pairs for device 

manufacturing or onboarding. Private keys must be kept in 

secure hardware, such as TPMs, Secure Enclaves, or 

dedicated chips for cryptography. 

 

Then, we must set up a Trusted Certification Authority 

(CA) that issues digital certificates binding device identities 

to their ECC public keys. The devices must trust this CA to 

validate each other's certificates. Next, authentication is done 

using ECC, namely ECDSA, where ECDSA signatures are 

used every time the device enrolls or moves around the 6G 

network. The network checks the signature against the stored 

public key to identify the entity. 

 

In addition, ECC Key Exchange (ECDH) is fast and 

allows secure key exchanges between network nodes and 

devices. This means symmetric keys are derived for 

encrypted session operations with AES encryption. Next, 

those lightweight ECC libraries like WolfSSL or micro-ecc 

will be targeted for specialized optimization design in 6G 

hardware, concerning ECC algorithm optimization for 

hardware and implementing countermeasures against side-

channel attacks like constant-time computation next-before. 

 

Secure and Encrypt Data. Messages exchange during 

a key exchange can also use the symmetric keys to secure 

signaling messages, data packets, control planes, and user 

sessions. They can also be applied to secure end-to-end 

encryption of data in transit. 

 

An ECC private key and an ECC public key are 

generated for ECC. The private keys in ECC are integers, 

commonly in the range of 256 bits. The random integer 

chosen from the range defined on the elliptic curve generates 

the key in ECC cryptography. The whole set of random 

integers within the range is a private key in ECC.  

 

Public keys within ECC represent points on a curve as 

pairs of integer coordinates {x, y}. The unique property of EC 

points is that they can be compressed to one coordinate + 1 

bit (even or odd). Consequently, the compressed public key 

consists of a 257-bit integer corresponding to a 256-bit ECC 

private key. 

 

The equation describes the elliptic curves, which are 

flat algebraic curves made up of all points {x, y}: 

 

A x3 + B x2 y + C x y2 + D y3 + E x2 + F x y + G y2 + H x + 

I y + J = 0 

The simplified version of elliptic curves used in ECC 

cryptography, known as the Weierstras form[6], is described 

as: 

 

y2 = x3 + ax + b 

 

For instance, an elliptic curve of the following shape 

serves as the basis for the NIST curve secp256k1 (used in 

Bitcoin): 

 

y2 = x3 + 2 (the above elliptic curve equation, where a 

= 0 and b = 2) 

 

 
Fig 1 Elliptic Curve Equation 

 

ECC employs elliptic curves over the finite field [11-

12] F2m (where the field size is p = 2m) or Fp (where p is 

prime and p > 3). As a result, the field is a square matrix of 

size p x p, and the curve's points can only be integer positions 

inside the field. Every algebraic operation in the same field 

yields a different point in that field. Thus, the following is the 

representation of the elliptic curve equation over the finite 

field Fp: 

 

y2 ≡ x3 + ax + b (mod p) 

 

For instance, the "Bitcoin curve" (secp256k1) uses an 

elliptic curve over the finite field F17: 

 

y2 ≡ x3 + 7 (mod p) 

 

This section describes how to use public-key 

encryption and decryption based on elliptic curves. Assume 

that you have an ECC private-public key pair and that you 

must use it to encrypt and decode data. According to the 

definition, this rule governs how asymmetric encryption 

operates. Figure 2 shows that if data is encrypted using a 

private key, the corresponding public key can later decipher 

the ciphertext. 
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Fig 2 Asymmetric Encryption Process 

 

The RSA cryptosystem can use the aforementioned 

procedure, however the ECC cannot. The encryption 

mechanism is not directly provided by elliptic curve 

cryptography (ECC). In order to create a shared secret key for 

symmetric data encryption and decryption, this study 

suggested designing a hybrid encryption system employing 

the ECDH (Elliptic Curve Diffie–Hellman) key exchange 

scheme. 

 

Using the tinyec library, the Python code creates an 

ECC private-public key pair for the recipient of the message 

(based on the brainpoolP256r1 curve). It then uses the 

recipient's public key to generate an ephemeral ciphertext 

public key (for ECDH) and a secret shared key (for 

encryption). Later, it uses the recipient's private key and the 

previously generated ephemeral ciphertext public key to 

generate the same secret shared key (for decryption). This is 

the output of the code shown above: 

 

 Private Key:  

0x5c47513f125a733a019060adc831b0e0cbd476dd63724db

61b33eec9fa9516f9 

 

 Public Key:  

0x56f1932b33181ce1da84075e49432806d21debe339

64fa13ae139038eaf4d84d0 

 

 Ciphertext Pubkey: 

0x9de17a915b9e23ab94e88e411cf87351cc800e5574

32e10c3c91d6dcd62075751 

 

 Encryption Key: 

0x35e01f2af3d22ee83cce16c0a4f632ae34a2ccd8267

5073ca5cfee95168f794a1 

 

 Decryption Key:  

0x35e01f2af3d22ee83cce16c0a4f632ae34a2ccd8267

5073ca5cfee95168f794a1 

 

The output makes it evident that the decryption key, 

which is generated from the matching private key, and the 

encryption key, which is derived from the public key, are 

identical.  

 

In an integrated encryption scheme, these keys will be 

utilized for both data encryption and decryption. If you run 

the code, the result above will differ since ciphertextPrivKey 

is generated randomly, but the encryption and decryption 

keys (the ECDH shared secret) will always be the same. 

 

Using a symmetric encryption system such as AES-

GCM, the secret key is utilized for symmetric data encryption 

once it is available. Let's put into practice a fully functional 

hybrid technique for asymmetric ECC encryption and 

decryption. The AES authenticated symmetric cipher and the 

brainpoolP256r1 curve will serve as its foundation. 

 

Using the tinyec library, the preceding example begins 

by creating an ECC keys pair for the message recipient: 

pubKey + privKey. Using the hybrid encryption strategy 

(asymmetric ECC + symmetric AES), these keys will be used 

to encrypt the message (for example, the user password) and 

subsequently decrypt it back to its original form. 

 

Next, use the pubKey to encrypt the message. The 

output will look like this: { ciphertext, nonce, authTag, 

ciphertextPubKey }. Symmetric AES encryption yields the 

ciphertext, nonce (random AES initialization vector), and 

authTag (the encrypted text's MAC code, as determined by 

the GCM block mode).  

 

In order to retrieve the AES symmetric key during the 

decryption process, it is also necessary to collect a randomly 

generated public key, ciphertextPubKey, which will be 

contained in the encrypted message.  

 

Together with the decryption privateKey, the data 

generated during encryption—which looks like this: { 

ciphertext, nonce, authTag, ciphertextPubKey }—is used to 

decrypt the encrypted communication. The decrypted 

plaintext message is the end result.  

 

Internally, the encrypt_ECC(msg, pubKey) function 

computes the symmetric encryption shared ECC key 

sharedECCKey = ciphertextPrivKey * pubKey after first 

creating an ephemeral ECC key-pair for the ciphertext. Since 

this key is an EC point, its x and y coordinates are hashed to 

convert it to a 256-bit AES secret key (integer).  

 

Lastly, using the 256-bit shared secret key secretKey, 

the AES cipher (from Pycryptodome) encrypts the message 

and outputs {ciphertext, nonce, authTag}. 
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The symmetric encryption shared ECC key 

sharedECCKey = privKey * ciphertextPubKey is initially 

determined internally by the decrypt ECC 

(encryptedMsg{ciphertext, nonce, authTag, 

ciphertextPubKey}, privKey) function.  

 

Since it is an EC point, the x and y coordinates of the 

point were first hashed to convert it to a 256-bit AES secret 

key. The 256-bit shared secret key secretKey is then used to 

decrypt the {ciphertext, nonce, authTag} using the AES 

cipher. The original plaintext message is the output that is 

generated. The following is the outcome of the code 

mentioned above: 

 

original msg: b'Text to be encrypted by ECC public 

key and decrypted by its corresponding ECC private key' 

 

 Encrypted Msg: {'Ciphertext': 

b'6c0c9051c90e3247c31b5165d1a3d101c4bfd2454ca

395e2586b0f3abde2741c8ae0a6b8d027ef8cc4f841dc88037e

3c69209354dff8d6c36dd1dccaee1906d063b80cedb50597a5

564815eca557caa090acae0c4a1cdcd06f', 'nonce': 

b'd04a25533676bfdd085c8864d2ecb17e', 'authTag': 

b'd0514a9709f3d5d20319b15db0532e20', 

  

 'Ciphertextpubkey':  

'0x5afb37a10e972ad4c8aca946106a1ab93badd70b9d

bba74fba19d8d293f0d9221'} 

 

decrypted msg: b'Text to be encrypted by ECC public 

key and decrypted by its corresponding ECC private key' 

 

In an e-learning environment, the data that is 

transferred is expressed in JSON format. It can be encrypted 

and decrypted using the previously described manner and is 

handled as plain text.  

 

Fog computing is used to solve latency problems that 

may arise while utilizing ECC cryptography to protect user 

authentication and e-learning resources. However, over a 

limited time, fog computing fully synchronizes with the 

cloud.  

 

 Comparison Between ECC and RSA: 

One viable asymmetric-key cryptosystem is rival 

Shamir Adleman (RSA) [13]. The de facto standard for 

public-key cryptography is established. Its security falls 

within the challenge of integer factorization. RSA's 

encryption method is more efficient than its decoding 

method. Numerous scholars have suggested using the 

Chinese Remainder Theorem (CRT) to increase the 

decryption efficiency of RSA. Verma et al. [14] suggested a 

model to use CRT to speed up the RSA's decryption time. 

Additionally, they suggested using a matrix with a small 

order to generate cryptographic keys and huge modulus.  

 

Larger key sizes are necessary for improved and more 

robust data protection, which puts additional strain on 

computer systems.  

 

Three sample data inputs of 8 bits, 64 bits, and 256 

bits, along with random private keys in accordance with 

NIST's standard, were used to test RSA and ECC for 

information security [15]. The Python tests are conducted on 

an Intel Pentium dual-core CPU running on the Microsoft 

Windows platform (2.60 GHz, 533 MHz, 1 MB L2 cache) 

with 8GB DDR4 RAM. 

 

Table 1 Key 8 Bits – Encryption, Decryption and Total Time (in Seconds) [6] 

Security 

Bit Level 

Encryption Time (s) Decryption Time (s) Total Time 

ECC RSA ECC RSA ECC RSA 

80 0.4885 0.0307 1.3267 0.7543 1.8152 0.785 

112 2.203 0.0299 1.5863 2.7075 3.7893 2.7375 

128 3.8763 0.0305 1.769 6.9409 5.6453 6.9714 

144 4.7266 0.0489 2.0022 13.6472 6.7288 13.6962 

 

 
Fig 3 Encryption / Decryption Using Key 8 Bits[6] 
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When utilizing key 8 bits, ECC's encryption time is longer than RSA's in Figure 3, but ECC's decryption time is shorter. 

Nevertheless, ECC takes less time to encrypt and decrypt than RSA. 

 

Table 2 Key 64 Bits – Encryption, Decryption and Total Time (in Seconds) [6] 

Security 

Bit Level 

Encryption Time (s) Decryption Time (s) Total Time 

ECC RSA ECC RSA ECC RSA 

80 2.1685 0.1366 5.9099 5.5372 8.0784 5.6738 

112 9.9855 0.1635 6.9333 20.4108 16.9188 20.5743 

128 15.0882 0.1672 7.3584 46.4782 22.4466 46.6454 

144 20.2308 0.1385 8.4785 77.7642 28.7093 77.9027 

 

 
Fig 4 Encryption / Decryption Using Key 64 Bits[6] 

 

Figure 4 shows how to use a 64-bit key for encryption and decryption. RSA encryption takes longer than ECC encryption, 

but ECC encryption takes less time to decrypt than RSA encryption, which intersects with the overall RSA encryption/decryption 

time. ECC takes significantly less time overall than RSA. 

 

Table 3 Key 256 Bits – Encryption, Decryption and Total Time (in Seconds) [6] 

Security 

Bit Level 

Encryption Time (s) Decryption Time (s) Total Time 

ECC RSA ECC RSA ECC RSA 

80 7.9240 0.5596 22.8851 19.3177 30.8091 19.8772 

112 39.7008 0.5815 26.3331 102.0337 66.0339 102.6153 

128 58.4386 0.5611 27.4060 209.6086 85.8446 210.1697 

144 77.5034 0.5718 32.1522 311.0649 109.6556 311.6368 

 

V. CONCLUSION 

 

In conclusion, ECC integration can provide an 

effective and reliable solution against the challenging 

demands expected to arise in wireless communication shortly 

in 6G environments. With its small key size, fast processing 

ability, and battery conservation within devices, ECC will 

serve as the appropriate design to safeguard extensive device 

interconnectivity and sensitive information flows projected in 

6G environments. 

 

By combining ECC authentication, key exchange, and 

encryption with secure hardware implementations, robust 

end-to-end security can be obtained in 6G networks while 

allowing for ultra-low latency and reliability needed for the 

next-generation application. However, successful 

deployment will demand perfect adherence to cryptographic 

best practices, careful standardization, and continuous 

security assessments that help alleviate the range of attacks 

that may arise. Thus, ECC will be a central mast on which the 

security, scalability, and resilience of a 6G future will hinge. 

 

Securing these networks has become paramount with 

the rise of 6G networks and their demand for the highest 

possible connectivity, fastest possible speed, and astute 

management. The answers are offered by the newly adapted 

concept of Elliptic Curve Cryptography, which is believed to 

give strong security assurances while using minimal 

computational and energy resources. This fits in with the 

application range of diverse and resource-poor devices that 

would populate the ecosystems of 6G.  
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6G systems can build trust, privacy, and integrity on 

secure ECC-based authentication, key exchange, lightweight 

encryption, robust hardware protection. Nevertheless, 

continuous innovations and monitoring and strict compliance 

with globally accepted cryptographic standards will remain 

central to the best defenses against the threats raised, ensuring 

that ECC will always be a platform for secure 6G deployment 

in the coming years. 

 

 
Fig 5 Encryption / Decryption Using Key 256 Bits[6] 

 

In Figure 5, ECC encryption is higher than RSA 

encryption, but ECC decryption is lower than RSA 

decryption. ECC encryption and decryption use less time 

overall than RSA encryption and decryption.  

 

According to earlier findings, ECC is more efficient 

than RSA. Experiments and the findings show that ECC is 

slow at encryption but very effective at decryption, while 

RSA is very effective at encryption but slow at decryption. 

ECC is more secure and efficient overall than RSA, albeit 

[15, 16, 17]. 

 

However, the encryption/decryption procedure for 

RSA is longer than for ECC as the key size increases. In the 

encryption/decryption process, key size matters. When 

employing a large value key, such as 256 bits, ECC performs 

better than RSA. 

 

 Elliptic Curve Cryptography Offers Several Benefits Over 

RSA Certificates: 

Increased security. Even though RSA is impenetrable 

right now, experts think ECC will be more resilient to attacks 

in the future. Therefore, employing ECC could provide you 

with increased security down the road. Increased 

effectiveness. Your website may lag if you use huge RSA 

keys because they require a lot of processing power to encrypt 

and decrypt data. On the other hand, ECC can scale up more 

effectively without using significant computer power.  

 

Complete confidentiality. Put simply, this means that 

even in the event that the private key is compromised, the 

session keys—which are actually used to encrypt the data 

transferred between the user and the server—remain safe. If 

a website is being monitored by outside parties, this could be 

helpful. 
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