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Abstract: Imaging techniques are widely used for medical diagnostics. This can sometimes lead to a real bottleneck when 

there is a shortage of medical practitioners, and the images must be manually processed. In such a situation, there is a need 

to reduce the amount of manual work by automating part of the analysis. In this study, we investigate the potential of a 

machine-learning algorithm for trauma detection in medical image processing. A new method called ResNet50V2 was 

developed on the trauma dataset to detect trauma disease. We compare the results of the new method analysis with other 

state-of-the-art networks. The proposed base model, ResNet50V2, received a score of 99.40%.  
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I. INTRODUCTION 

 

Post-Traumatic Stress Disorder (PTSD) and acute stress 

disorder (ASD) are two of the most crippling mental health 

disorders that can develop after being exposed to horrific 

events like war, natural catastrophes, accidents, or acts of mass 

murder [1]. It has long been a problem in both clinical practice 

and academic research to make a diagnosis of ASD or PTSD. 

There are many different ways in which trauma-related 

disorders might manifest, due to the wide variety of risk factors 

and complicated causes. Diagnostic criteria for classification 

systems such as the DSM-5 have also been refined through 

research, including chronic populations and those in tertiary 

care settings. Nevertheless, the phenomenology of the illness in 

its early phases can be quite variable and generic, and these 

criteria might not be able to capture it completely. Cognitive 

processing therapy and extended exposure therapy have 

garnered the greatest interest among the evidence-based 

trauma-focused treatments [2]. It might be tough to create first-

line psychotherapies owing to issues like patient burden and 

varied patient characteristics. Since clinical trial subjects do not 

necessarily reflect the multimorbidity profiles of "real-life" 

patients, it is possible that some statistically significant results 

claimed by evidence-based medicine may not apply to 

individual patients. This is especially important to consider in 

PTSD, as research does not always fully address the substantial 

clinical variability that might be present in this disorder. 

Machine learning is a subfield of AI and computer 

science that teaches computers and other automated systems 

how to learn from data. It falls under the umbrella of AI and 

computer science. Because it is able to handle complicated data 

sets with various distributions and use advanced mathematical 

approaches, machine learning is useful for building complex 

data models [3]. Both supervised and unsupervised methods are 

commonly used in the "learning" process. In supervised 

learning, the computer learns to convert inputs into desired 

outputs via methods like regression (where the result is a 

numerical value) or classification (where the result is a 

category, like "disease" or "no disease"). Data input and desired 

results are given to the system by the user. A few examples of 

popular supervised learning algorithms are logistic regression, 

neural networks, and support vector machines. One of the most 

well-known medical applications of supervised learning is the 

Framingham Risk Score, which is used to diagnose coronary 

heart disease. Another common use of this method is risk 

calculation and prediction. While supervised learning relies on 

predetermined associations and output variables, unsupervised 

learning seeks to understand the data structure at its core [4]. It 

can be done via clustering, which finds groups of related cases, 

or by density estimation, which finds the distribution of the 

available data. Network analysis, which makes use of 

regression and clustering techniques, visualizes the connection 

between individual symptoms and groups of related symptoms, 

thus providing information on the amount and severity of 

correlations between symptoms. An up-to-date explanation of 
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the relevant machine learning principles and their limitations is 

available elsewhere.  

 

Improving disease classification, optimizing 

individualized treatment selection, and predicting treatment 

results and risk factors are all possible with the use of machine 

learning methods. Because of the biological and clinical 

diversity associated with PTSD and ASD, which can impede 

our capacity to understand their causes and create effective 

treatments and diagnostic tools, machine learning presents a 

hopeful avenue for further investigation into these disorders 

[5].  

 

The most popular diagnostic technique for blunt 

abdominal trauma (BAT) is computed tomography, which has 

a big impact on treatment strategies. Deep learning models, or 

DLMs, have demonstrated significant potential to improve a 

number of clinical practice elements [6]. 

 

Artificial intelligence technology has the potential to 

address this issue by expediting the diagnosis of these types of 

injuries and improving patient care and treatment in 

emergencies. As a result, the medical field is becoming more 

and more interested in using AI and machine learning (ML) to 

support physicians. Utilizing AI models as virtual diagnostic 

assistants to function as secondary image readers can 

significantly enhance the accuracy and reliability of 

radiological image interpretation. This gives radiologists more 

authority and self-assurance in their diagnostic evaluations. 

Using AI's ability to quickly identify images can speed up the 

diagnosis procedure and increase clinical effectiveness. 

 

Early and precise injury detection is essential for both 

successful treatment and patient survival in trauma care. 

Conventional trauma assessment techniques frequently entail 

medical professionals' subjective appraisal and manual 

inspection, which can cause delays and irregularities. The 

emergence of machine learning holds promise for transforming 

trauma detection through automation and the use of data-driven 

insights. 

 

Because they rely on human judgement, the existing 

trauma detection technologies have limitations that might cause 

delays and variability in critical care settings. To deliver precise 

and rapid trauma assessments, an automated system that can 

evaluate different types of medical data is required. 

 

To create a machine learning-based automated trauma 

detection system that can effectively identify and categorize 

trauma cases by processing and analyzing medical data, 

including imaging scans, patient symptoms, and past medical 

records. By increasing trauma diagnosis speed and accuracy, 

this method seeks to improve patient outcomes. 

 

By developing and testing a machine learning-based 

automated trauma detection system, this study aims to increase 

the reliability, efficiency, and timeliness of trauma diagnoses. 

Specifically, this study aims to: 

 

The measurable Contributions of the study with expected 

results are as under; 

 Developed a deep learning method to classify the trauma 

disease. 

 Enhanced the performance of the existing models in terms 

of accuracy. 

 Analyzed the issue of an imbalanced dataset in the context 

of classification. 

 Developed a method to overcome the issues of high false-

negative rates. 

 

II. LITERATURE REVIEW 

 

Prior studies have concentrated on automating the 

assessment of trauma severity and organ segmentation. By 

utilising a deep learning-based segmentation technique that 

was strengthened by decision tree analysis, Drezin et al. were 

able to predict severe artery damage in liver trauma with an 

accuracy of 0.84. A similar methodology for quantitative 

evaluation and detection of liver trauma was created by 

Farzaneh et al., utilising 77 CT scans. Using active contour 

modelling, Chen et al. developed a four-part approach for the 

automated grading of spleen damage and automated kidney 

segmentation in trauma patients. Using a Little dataset and an 

external attention and synthetic phase augmentation module, 

Zhou et al. enhanced multiphase splenic vascular damage 

segmentation using a DeepLab-v3 baseline. Combining shape 

and statistical data with texture feature extraction has improved 

the diagnosis of traumatic brain injury (TBI). 

 

By using entropy to extract nonlinear features, 

Raghavendra et al. were able to identify cerebral haematomas 

in CT scans with an accuracy of 97.37 percent. He created a 

model for classifying aberrant CT slices utilising statistical, 

GLCM, and wavelet data. To classify haematoma subtypes, 

Sharma and Venugopalan used characteristics depending on 

shape, texture, and intensity. Tong et al. achieved an 84.86% 

recall rate using their midline creation technique for identifying 

haematomas, which involves extracting and comparing LBP 

texture features and histogram data of both hemispheres. He 

came to the conclusion that a Bayesian classifier and a distance 

transform using five landmarks could differentiate between 

normal and subarachnoid haematomas (SAH), and he 

suggested a DWT-based paradigm for this purpose in patients 

with traumatic brain injuries. 

 

Our goal in this research was to determine how well a 

prototype system based on deep learning could automatically 

detect rib fractures in trauma CT scans. Algorithm performance 

was on par with that of radiologists, with a sensitivity of 87.4% 

and specificity of 91.5% at the per-examination level. As a 

result of breathing artefacts, normal intercostal arteries, and 

undamaged ribs, the test generated 0.16 false positives per 

examination. The F1 score came out at 0.85. There were 587 

confirmed fractures out of 894 reports (sensitivity: 65.7%). 

Fracture displacement and acuteness were the main factors that 

correlated with the algorithm's accuracy. 

 

Since multiple rib fractures are more common in 

emergencies than single rib fractures, the algorithm worked 

better at the per-examination level. Just 9.4 percent of the scans 

that contained rib fractures in our dataset contained a single 

fracture. The algorithm's 94.1% NPV proves it is useful as a 

supplementary reading tool for the pre-exam level. 
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Rib fracture detection algorithms using CT images have 

only been the subject of a single pilot study. Although the 

number of false positives and false negatives per case was not 

stated, Yan et al. utilised a CNN and reported a sensitivity of 

95.0% and a significantly lower positive predictive value 

(PPV) of 55.7% for rib fracture identification. 

 

Our findings are consistent with previous research on the 

effectiveness of algorithms in detecting bone fractures using 

CT scans. Researchers found 81.3% sensitivity and 2.7 false 

positives per case when studying the effectiveness of support 

vector machines for vertebral body fractures. Our study 

improved the usability of clinical process by identifying fewer 

false positives per case (0.16). Our results are comparable to 

those of Bar et al., who also examined a segmentation step and 

a patch-based CNN for spinal compression fractures; however, 

they did not provide information regarding false positives. 

Their study also reported a sensitivity of 83.9% and a 

specificity of 93.8%. 

 

Also, we found 137 rib fractures that the algorithm had 

marked several times. Applying this approach at the per-

examination level has no major consequences; however, if it is 

used to precisely count the number of fractures and the results 

are then confirmed by a radiologist, workflow efficiency may 

be reduced. False estimates of the frequency of rib fractures 

may come from blind acceptance of the detailed results without 

verification. 

 

Although 97 acute fractures were missed in the textual 

CT reports, the algorithm was able to identify them. Because a 

higher incidence of rib fractures is linked to a higher death rate, 

this data highlights the significance of accurate rib fracture 

identification. Consistent with the results of Ringl et al., we also 

discovered that the detection rate for anterior fractures was 

lower than other places. This could be because it is difficult to 

diagnose the area where cartilage meets ribs. 

 

There have been numerous investigations into feature 

extraction approaches and segmentation methods for 

haematoma detection. In order to increase classification 

performance, many approaches for haematoma segmentation in 

CT scans use bespoke and handcrafted features. As an example, 

hematoma regions were segmented using modified DRLSE. 

The regions were further divided into four classes using shape 

and texture criteria that were manually created. By analyzing 

hematomas’ shapes, Al-Ayoob et al. were able to create a 

model that was 92% accurate in classifying them into three 

categories. Xiao et al. suggested a way to differentiate between 

subdural and epidural hematomas using main and secondary 

characteristics associated with the most extensive area of hyper 

density.  

 

 

 

 

 

 

 

 

 

Segmentation is typically approached as a pixel/voxel 

classification task or utilises classical picture delineation 

techniques in machine learning algorithms. After that, post-

processing methods including active contours, smoothing, 

morphological operations, and thresholding are applied to each 

pixel or voxel to extract relevant characteristics. While 

Farzaneh et al. identified each super-pixel as normal or 

subdural haematoma (SDH) using geometric, textural, and 

statistical criteria, Scherer et al. classified haematomas voxel-

wise using textural and statistical data. In their work on ICH 

identification, Muschelli et al. used intensity-feature-based 

voxel selection. 

 

Various hybrid segmentation algorithms have been put 

forth, such as active contouring, FCM clustering, region 

expansion, and thresholding. A wavelet-based thresholding and 

white matter FCM clustering (WMFCM) model was evaluated 

by Gautam and Raman, while a nonlinear 3D segmentation 

method utilising region growth was reported by Saenz et al. 

The use of FCM clustering and active contour modelling for 

haematoma delineation was successfully demonstrated by 

Bhadauria et al. with an accuracy of 99.10%.  

 

By testing MDRLSE with region growth and adaptive 

thresholding, Prakash et al. demonstrated that it effectively 

segmented haematomas in 3D CT images. Using an 

autoencoder trained to identify haematoma slices, Nag and 

colleagues demonstrated a cost-effective haematoma 

segmentation approach with a sensitivity of 0.71. 

 

Critical findings in CT scans can now be detected and 

classified using deep learning algorithms, according to current 

research. A deep learning-based approach for key finding 

identification, such as infarcts and haematomas, was 

introduced by Prevedello et al. A 3D convolutional neural 

network (CNN) model for CT result triage and classification 

was created by Titano et al. using ResNet-50. To merge slice-

level classification with context, Grewal et al. developed a 

RAD net, which achieved an accuracy of 81.82%. Using a U-

Net based architecture for localisation and classification, 

Chilamkurthy et al. utilised deep learning algorithms to detect 

and confirm abnormalities in non-contrast head CT scans. 

 

III. METHODOLOGY 

 

A. Materials and Methods 

This study introduces a machine-learning approach for 

trauma disease classification. Classification of trauma diseases 

affecting the mind using a machine-learning approach is 

presented in this paper. A first-level augmentation and pre-

processing stage is applied to generate distinct records and 

address the class imbalance. After mechanical features were 

extracted to differentiate between trauma diseases from the 

dataset, a pre-trained "Machine Learning Method" model was 

applied at the second level. Figure 1 shows the steps involved 

in the suggested method's process flow. 
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Fig 1 Flow Chart of the Presented Method. 

 

B. RSNA Abdominal Trauma Detection Dataset 

The effectiveness of machine learning methods depends 

heavily on the availability of a good dataset. The most 

extensive collection of high-quality trauma disease images 

made accessible for study can be found in the RSNA 

Abdominal Trauma Detection Diseases dataset archive [28]. 

There are 186K images in the dataset.  

 

C. Image Pre-Processing 

Preprocessing is applied to all input photos of the RSNA 

dataset to achieve increased consistency in classification results 

and enhanced feature extraction. A massive image dataset was 

needed for the CNN approach's extensive training repetitions 

to avoid the risk of over-fitting. 

 

All photos in the original RSNA dataset can be found in 

a resolution of 6000 × 4000 pixels. To hasten the process with 

Python code, the dataset is downsized to 224 x 224. 

 

We have utilized the Image Data Generator function of 

the Keras library in Python to enhance the data in multiple 

ways, preventing overfitting and expanding the training 

dataset. Keeping the same range of pixel values allowed us to 

cut the computing cost by utilizing a scale transformation. 

Consequently, a 0–1 range for pixel values was established 

using the parameter value (1. /255).  

 

 

 

 

 

 

The images were rotated by a fixed amount (25 degrees 

in this case) using the rotation transformation. With the width 

shift parameter set to 0.1, the images were shifted randomly to 

the right or left using the width shift range transformation. 

Using the height shift range option with a value of 0.1, the 

training images were vertically flipped. A shear angle of 0.2 

was used in this case; this is a method for image transformation 

wherein one axis is kept constant while the other is extended. 

A zoom range of 0.2 was utilized to enlarge the image, in 

accordance with the rules of random zoom transformation: a 

value greater than 1.0 indicates that the images were enlarged, 

and a value less than 1.0 indicates that the photos were zoomed 

out. Using the flip function, we were able to modify the image's 

horizontal orientation. We used a scale where zero is totally 

black and one is really light to change the brightness. 

 

We trained ResNet50V2 from the ground up using the 

dataset from the last chapter. The RSNA dataset was divided 

into three parts: training, testing, and validation. After training 

on the training set, the ResNet50V2 model was tested and 

evaluated using the validation and test datasets. As a result, we 

split the dataset between training, testing, and validation, with 

60% going to each. 

 

Scaling, rotating, brightening, height shifting, zooming, 

shear-ranging, horizontally flipping, and channel-shifting with 

fill mode closest were all used to extend the training set in order 

to increase the dataset size and diversity. Eliminating 

overfitting would guarantee that the model can be applied to 

new situations. Model optimization was employed in the study 

process. Training images with 60% image ratios were utilized 

in the current study using the RSNA dataset. Twenty percent of 

the remaining forty percent of the actual photos go into testing 

and validation. With the use of ResNet50V2, the model was 

taught to classify and forecast the labels of each training image. 

 

D. Architecture of ResNet50V2 

The ResNet model [29] is well-known and widely used in 

computer vision competitions due to its consistently excellent 

performance. Many more exist; for example, Inception 

ResNetV2 [30], Mobile Net [31], and Google Net [32]. These 

models are educated using information from numerous photos 

across various datasets. To effectively address a wide variety 

of computer vision problems, transfer learning methods can 

take advantage of these pre-trained model weights (dataset and 

computing resources). The ResNet50 model was pre-trained on 

a small dataset of plant species images for transfer learning. 

Subsequent paragraphs will delve into the specifics of the 

ResNet50V2 model's architecture and the many pre-trained 

weights it can draw from. The ResNet50V2 model is a fifty-

layer convolutional neural network (CNN). Figure-2, depicts 

the architecture of the ResNet50V2 model, including the 

ResNet50V2 fine-tuning setup. 
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Fig 2 Architecture of the ResNet50V2 Model. 

 

E. Evaluation Measures  

The testing dataset was used to evaluate the suggested 

approach following the training phase. We tested the 

architecture's efficacy using recall, accuracy, F1 score, and 

precision. We will examine the performance metrics utilized in 

this research in the parts that follow. What follows is a 

mathematical definition and representation of the terms "true 

positive," "true negative," "false negative," and "false positive." 

 

 Classification Accuracy  

The accuracy of a classification system can be evaluated 

by determining what percentage of its predictions were correct 

and what percentage were incorrect.  

 

Accuracy = T P+T N / (T P+T N +FP+FN) 

 

 Precision  

When analysing the effectiveness of a model, 

classification accuracy may not always be the most appropriate 

metric to employ. For instance, this is one of the scenarios 

where there is a considerable gap in socioeconomic status. It’s 

a safe bet to assume that each sample is of the highest possible 

quality. If the model isn’t picking up any new information, it 

would be irrational to infer that all components belong to the 

best class. Therefore, when we talk about accuracy, we refer to 

the fluctuation in findings you receive while measuring the 

same object several times with the same tools. The term 

"precision" refers to one of these statistics and can be defined 

as follows:  

 

Precision = T P / (T P+FP) 

 

 

 

 Recall  

Another critical parameter is called recall, and it refers to 

the percentage of input samples that are of a type that the model 

can accurately predict. The formula for the recall is as follows: 

Recall = T P / (T P+FN) 

 

 F1 Score  

The f1 score is a statistic utilised to contrast recall and 

precision.  

F1 Score = 2 * (Precision * Recall) (Precision + Recall) 

 

IV. RESULTS AND DISCUSSION 

 

A Google Research team evaluated the ResNet50V2 

model. This ResNet50V2 method experiment was built using 

Tensor-Flow, the free and open-source Keras, and Python. 

There was a default learning rate and a binary cross-entropy 

loss function used during training by the Adam optimizer. 

 Automated Trauma Detection by Using Machine Learning 

was observed using the RSNA dataset to assess its efficacy. 

 Evaluation of the presented ResNet50V2 model’s 

performance on the RSNA dataset using data augmentation 

techniques on the training set. 

 The results were compared to those of other state-of-the-

art networks. 

 To evaluate the results of Trauma disease classification 

prior studies using machine learning. 

 

A. Performance of Proposed Model on RSNA Dataset 

We evaluated and analyzed the performance of the 

ResNet50V2 base model on the RSNA dataset. Validation 

accuracy for the model increased from 99.87% at the end of the 

first epoch to 99.67% after the most recent epoch. Training 

accuracy improves from 96.85% after the first epoch to 99.45% 

after the last epoch in Figure 4.1. As seen in Figure-3, 

ResNet50V2’s validation loss drastically decreased from 75% 

to 1.34%. Furthermore, similar to the initial loss, the training 

loss was 9.78% after the first period and 1.76% after finishing 

training. 

 

On a previously unseen test set, the ResNet50V2 base 

model was evaluated. While the model's overall accuracy was 

99.40% across the board in the test set, ResNet50V2 excelled 

in the trauma class, achieving 99% precision, 100% recall, and 

99% F1-score. The typical class is first-rate, with a flawless 

99% recall, 100% accuracy, and 99% f1 score. 

 

Using a confusion matrix, we could visually examine 

how well various models classified data. The rows of the 

confusion matrix that are not on the diagonal represent the 

inaccurate predictions. Classification accuracy in the related 

ResNet50V2 base model was shown by darker colours, 

whereas misclassified data was shown by lighter colours. 

Figure-4 shows the confusion matrices from the test set that 

will be used to evaluate the overall effectiveness of 

ResNet50V2. The confusion matrix shows that the 

ResNet50V2 baseline model's predictions were correct for all 

picture categories. Confusion analysis using the default 

ResNet50V2 model settings reveals a data identification 

success rate of 99.40% and a false positive rate of 0.60%. The 

ResNet50V2 base model does a fantastic job when comparing 

the trauma and normal samples' confusion matrices. 
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Fig 4 The ResNet50V2 Base Model Confusion Matrix on 

Test Set. 

 

V. CONCLUSION 

 

The research described in this manuscript explored using 

Convolutional Neural Networks to recognize trauma in real-

time using machine learning techniques. For trauma detection, 

this method is both reliable and quick. The test findings 

demonstrate a remarkable accuracy rate in identifying people 

who are either trauma disease or normal. The trained model 

completed the task using the ResNet50V2 model, with 

individual accuracy results of 99.40%.  

 

The best way to train a CNN model to identify and 

recognize trauma diseases in humans is to integrate multiple 

models and evaluate their performance accuracy. In addition, 

the authors recommend an improved optimizer, more precise 

parameter values, enhanced tuning, and models for adaptive 

transfer learning. 
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Fig 3 The ResNet50V2 Base Model: (a) Accuracy (b) Loss Graph. 
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