
Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25aug1309

IJISRT25AUG1309 www.ijisrt.com 2165

Modified March FSM-Based Memory BIST

Architecture

Ahmed Salahuddin Suhaib1; Dr. M. Asha Rani2

1,2Electronics and Communication Engineering Jawaharlal Nehru Technological University Hyderabad

Hyderabad, India.

Publication Date: 2025/09/04

Abstract: The Memory Built-In Self-Test (MBIST) is the standard for testing dense embedded memories that dominate

modern SoCs; however, a critical trade-off exists between the test time and fault coverage. While comprehensive

algorithms such as March C- (10n) are slow, faster algorithms such as MATS++ (6n) are often preferred, although both

aim to detect critical Address Decoder Faults (AFs). This study presents an MBIST controller employing a novel March

(5n) algorithm that bridges this gap, offering robust fault coverage with superior efficiency. The core innovation of the

algorithm is the "address-as-data" paradigm, which uses the memory address (a) and its bitwise complement (~a) as test

patterns to efficiently detect Stuck-at (SAF), Transition (TF), and Address Decoder (AF) faults.

The proposed FSM-based controller has been designed in Verilog and validated on a Xilinx Zynq-7000 series FPGA

platform. Experimental evaluation demonstrates that the March (5n) algorithm achieves significant reductions in test time

compared to established approaches, with minimal resource overhead. These findings highlight the effectiveness of the

March (5n) algorithm in achieving a balanced trade-off between speed and fault coverage, positioning it as a practical

candidate for deployment in high-volume, cost-sensitive applications.

Keywords: MBIST, March 5n, March C-, MATS++.

How to Cite: Ahmed Salahuddin Suhaib; Dr. M. Asha Rani (2025) Modified March FSM-Based Memory BIST Architecture.

International Journal of Innovative Science and Research Technology, 10 (8), 2165-2169.

https://doi.org/10.38124/ijisrt/25aug1309

I. INTRODUCTION

The scaling of system-on-chip (SoC) technology has

made embedded memories the dominant on-chip component,

creating significant testing challenges due to their density and

limited accessibility. Traditional external testing with

Automatic Test Equipment (ATE) is costly and often

impractical, making Memory Built-In Self-Test (MBIST) the

industry-standard solution. By integrating test logic on-chip,

MBIST enables efficient, at-speed testing while reducing

dependence on external hardware.

The effectiveness of MBIST depends largely on the

underlying algorithm, where a trade-off exists between fault

coverage and test time. March-based algorithms are widely

adopted but illustrate this conflict: comprehensive tests such

as March C- (10n) achieve high fault coverage, including

Stuck-at (SAF), Transition (TF), Address Decoder (AF), and

Coupling Faults (CF), but incur long execution times. Faster

algorithms such as MATS++ (6n) reduce test time and still

cover SAF, TF, and AFs, but fail to detect the broader range

of faults. This motivates the need for an intermediate solution

that achieves critical fault coverage with lower complexity.

This work introduces an FSM-based MBIST controller

implementing a novel March (5n) algorithm that applies an

"address-as-data" paradigm, using each memory address and

its bitwise complement as test patterns. This design achieves

robust AF coverage comparable to MATS++ but within a 5n

complexity framework, improving efficiency without

significant overhead. The controller is validated through fault

injection simulations and FPGA hardware implementation on

a Xilinx Zynq-7000 device, with results benchmarked against

March C- and MATS++. The findings demonstrate that the

March (5n) algorithm offers a balanced solution between
speed and coverage, making it well-suited for high-volume,

cost-sensitive applications.

II. BACKGROUND AND RELATED WORK

To fully appreciate the contribution of the March (5n)

algorithm, it is essential to first understand the types of

physical defects it targets and the established algorithms

against which it is benchmarked. This section provides an

overview of common memory fault models and summarizes

the principles of industry-standard March test algorithms.

https://doi.org/10.38124/ijisrt/25aug1309
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25aug1309

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25aug1309

IJISRT25AUG1309 www.ijisrt.com 2166

 Memory Fault Models
The dense, array-based structure of modern memories

makes them susceptible to a unique set of physical defects that

differ from those in random logic. These defects are

abstracted into functional fault models, which describe the

incorrect behaviour of the memory from an external

perspective. A test algorithm's quality is measured by its

ability to detect these modelled faults. The key fault models

relevant to this study are:

 Stuck-at Faults (SAF): A cell or line is fixed at 0 or 1

regardless of input. Detection requires writing and reading
both values.

 Transition Faults (TF): A cell fails to switch from 0→1 or

1→0, typically due to timing issues. Tests must enforce

both transitions.

 Address Decoder Faults (AF): Faulty decoding may cause

a cell to be unaddressable, multiple cells to be accessed, or

the same cell to appear at different addresses. These faults

require sequences in opposite address orders.

 Coupling Faults (CF): An operation on one cell

(aggressor) alters another cell (victim), such as inversion

or forcing to a constant state. Detecting CFs requires more
complex data backgrounds.

 March Test Algorithms

March tests are the dominant methodology for memory

testing due to their linear complexity and high fault coverage.

A March test consists of a sequence of "March elements,"

where each element specifies a series of read/write operations

performed on every cell, typically in an ascending (↑) or

descending (↓) address order, before moving to the next

element. The following algorithms are the benchmarks for this

study:

 MATS++ (6n): The MATS++ algorithm is represented as

{↑(w0); ↑ (r0, w1); ↓ (r1, w0); ↑(r0)}. It efficiently detects

SAF, TF, and AF with six operations per cell.

 March C- (10n): Represented as {(w0); ↑ (r0, w1); ↑ (r1,

w0); ↓ (r0, w1); ↓ (r1, w0); ↑(r0)}, March C- is one of the

most widely used algorithms covering SAF, TF, AF, and

many CFs. Its thoroughness comes at the cost of long test

times.

These algorithms illustrate the core MBIST trade-off:

March C- offers broad coverage but is slow, while MATS++
is faster but limited. This gap motivates intermediate

approaches like the March (5n) algorithm, which aims to

balance efficiency with robust AF detection.

III. THE MARCH (5N) ALGORITHM AND MBIST

ARCHITECTURE

The proposed MBIST solution introduces a Finite State

Machine (FSM)-based controller implementing a novel March

(5n) algorithm. The aim is to achieve reliable fault coverage

with reduced test time compared to conventional March tests.

This section outlines the algorithm’s operational principles,

the controller architecture, and the FPGA-based

implementation used for validation.

 Algorithmic Principles
The March (5n) algorithm consists of four elements: {↑

(wb, wa); ↑(ra); ↓(wb); ↓(rb)}, where a represents the memory

address, and b its bitwise complement. Unlike traditional tests

that rely on static 0/1 patterns, this “address-as-data”

paradigm generates dynamic data backgrounds directly from

the address space.

 This Structure Enables Efficient Fault Detection:

 SAF: By writing and reading both a and its bitwise

complement b for every memory location, every bit in the

data word is subjected to both a 0 and a 1 state, ensuring
any stuck-at condition is exposed.

 TF: The (wb,wa) element sensitizes the up-transition,

which is verified by the subsequent ra operation. The

transition from a to b (between the ra and wb elements)

sensitizes the down-transition, which is verified by the

final rb operation.

 AF: A fault where a higher address incorrectly accesses a

lower one is caught by the initial ascending pass (↑(ra)).

Conversely, a fault where a lower address overwrites a

higher one is masked during the ascending pass but is

guaranteed to be detected by the subsequent descending
pass (↓(rb)). This intelligent structure ensures

comprehensive AF coverage.

Thus, the algorithm achieves full SAF, TF, and AF

coverage within 5n complexity.

 Hardware Architecture

The controller is implemented as a modular FSM-based

design with four main blocks:

 FSM Controller: Sequences the March elements (M0–M3)
and synchronizes operations.

 Address Generator: Produces ascending or descending

addresses using a counter and signals pass completion.

 Data Generator: Derives a and b patterns. For wider data

buses, an address-tiling scheme replicates address bits

across the word, ensuring all bits are exercised.

 Memory Interface: Switches the MUT into test mode by

routing control, address, and data signals from the MBIST

controller.

https://doi.org/10.38124/ijisrt/25aug1309
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25aug1309

IJISRT25AUG1309 www.ijisrt.com 2167

Fig. 1 High Level MBIST Controller Design

 Implementation Details

The design was coded in Verilog and deployed on a

Xilinx Zynq-7000 FPGA using Vivado. A Zedboard interface

with switches and LEDs supports reset, test initiation, fault
injection, and real-time status reporting. This platform

demonstrates correct functionality and validates the proposed

architecture under hardware conditions.

IV. EXPERIMENTAL SETUP AND

METHODOLOGY

The March (5n) MBIST controller was validated

through simulation-based fault coverage analysis and FPGA-

based hardware evaluation. The methodology included

controlled fault injection in simulation and comparative

benchmarking against March C- and MATS++ to assess
coverage, performance, and implementation cost.

 Test Environment

Design and functional verification were carried out in

Verilog using a standard HDL simulator. Fault coverage was

analyzed at the simulation level, while hardware synthesis and

implementation were performed with the Xilinx Vivado

Design Suite. A Xilinx Zynq-7000 FPGA on the Digilent

Zedboard served as the validation platform, enabling

collection of real hardware metrics including area, power, and

execution time.

 Fault Injection and Coverage Analysis

Fault detection capability was evaluated using a fault

injection framework. A total of 100 faults were modeled: 20

Stuck-at, 20 Transition, 30 Address Decoder (10 each for non-

access, multiple-access, and wrong-access), and 30 Coupling

(10 each for dynamic, inversion, and idempotent). Each fault

was injected individually into the memory model and tested

with the controller. Coverage was computed as the percentage
of injected faults successfully detected by the algorithm,

providing a uniform basis for comparison.

 Performance and Resource Evaluation

Beyond coverage, the controllers were benchmarked on

three implementation metrics for memories of 4KB, 8KB,

32KB, and 64KB:

 Resource Utilization: FPGA area cost, measured in LUTs,

Flip-Flops, and BRAMs.

 Power Consumption: On-chip dynamic power reported by

Vivado.

 Test Time: Clock cycles and execution time required to

complete the test sequence, giving an implementation-

independent measure of efficiency.

V. RESULTS AND ANALYSIS

The performance of March C-, MATS++, and the

proposed March (5n) MBIST controllers was evaluated

through simulation and FPGA implementation. Results are

presented in terms of fault coverage and hardware metrics,

with emphasis on comparative efficiency.

 Fault Coverage Analysis

Table 1 Summarizes the Coverage Achieved Against

100 Injected Faults.

Table 1 Fault Coverage Comparision

Algorithm Complexity Faults Detected Coverage

March C- 10n SAF, TF, AF, CF 100%

MATS++ 6n SAF, TF, AF 70%

March (5n) 5n SAF, TF, AF 70%

https://doi.org/10.38124/ijisrt/25aug1309
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25aug1309

IJISRT25AUG1309 www.ijisrt.com 2168

Fig 2 ModelSim Simulation of March 5n

March C- confirmed its status as the most

comprehensive test, detecting all fault classes. Both
MATS++ and March (5n) achieved 70% coverage, targeting

SAF, TF, and AF but not Coupling Faults. The equivalence

in fault coverage between March (5n) and MATS++

highlights that the key differentiator lies in test efficiency

rather than detection capability.

 Performance and Resource Analysis

Hardware synthesis results for the three controllers

across multiple memory sizes are given in Tables 2–4.

Table 2 March C- Performance and Resource Utilization

Metric 4KB 8KB 32KB 64KB

LUTs 31 28 30 31

FF 55 56 58 59

Power (W) 0.121 0.118 0.118 0.117

Clock Cycles 10,245 20,485 81,925 163,845

Table 3 MATS++ Performance and Resource Utilization

Metric 4KB 8KB 32KB 64KB

LUTs 30 28 29 30

FF 52 53 55 56

Power (W) 0.115 0.112 0.113 0.115

Clock Cycles 6,146 12,290 49,154 98,306

Table 4 March (5n) Performance and Resource Utilization

Metric 4KB 8KB 32KB 64KB

LUTs 30 28 29 30

FF 50 51 53 53

Power (W) 0.113 0.113 0.114 0.114

Clock Cycles 5,124 10,244 40,964 81,924

 Test Time: The March (5n) controller consistently

outperformed the other algorithms. Compared to March
C-, it reduced test time by about 50% (e.g., 10,245 vs.

5,124 cycles at 4KB). Against MATS++, it delivered an

average 20% speed improvement while maintaining

identical fault coverage.

 Resource Utilization: LUT and FF usage across all

algorithms was nearly identical, with differences of only a

few registers.

 Power Consumption: Power measurements remained

within a narrow range (0.112–0.121 W), showing no

meaningful penalty from the address-as-data mechanism.

VI. DISCUSSION

The results demonstrate that March (5n) achieves the
same coverage as MATS++ while reducing test time by 20%.

At the same time, it maintains the lightweight hardware

profile typical of linear March tests. Compared with March

C-, it offers a practical compromise—delivering critical SAF,

TF, and AF detection at half the time and negligible resource

savings. For cost-sensitive applications where AF coverage is

essential but full 10n testing is impractical, the March (5n)

controller provides a balanced and efficient solution.

https://doi.org/10.38124/ijisrt/25aug1309
http://www.ijisrt.com/

Volume 10, Issue 8, August – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25aug1309

IJISRT25AUG1309 www.ijisrt.com 2169

VII. CONCLUSION

This work addressed the trade-off between test time and

fault coverage in Memory Built-In Self-Test by introducing

an FSM-based controller for the March (5n) algorithm. The

design was implemented in Verilog, verified through fault

injection, and validated on a Xilinx Zynq-7000 FPGA.

Comparative evaluation against March C- and MATS++

confirmed the effectiveness of the approach.

The results show that March (5n) achieves 70%

coverage of common fault models—equivalent to
MATS++—while reducing test time by approximately 20%.

Against March C-, it maintains critical SAF, TF, and AF

detection at half the test time. These gains are achieved

without additional resource or power overhead,

demonstrating that the address-as-data principle is both

practical and efficient.

Overall, the March (5n) algorithm offers a balanced

alternative for applications where Address Decoder Fault

coverage is essential but the time cost of a full 10n algorithm

is unacceptable. Its efficiency and low hardware footprint

make it well-suited for cost-sensitive, high-volume memory
testing.

REFERENCES

[1]. T. S. Nguan Kong, N. E. Alias, M. L. P. Tan, A.

Hamzah, U. U. Sheikh, I. Kamisian, and Y. A. Wahab,

"An Efficient March (5n) FSM-Based Memory Built-

In Self-Test (MBIST) Architecture," in Proc. 2021

IEEE Regional Symposium on Micro and

Nanoelectronics (RSM), 2021, pp. 76-79.

[2]. B. Singh, A. Khosla, and S. B. Narang, "Area
Overhead and Power Analysis of March Algorithms

for Memory BIST," Procedia Engineering, vol. 30, pp.

930-936, 2012.

[3]. M. Parvathi, N. Vasantha, and K. S. Prasad, "Modified

March C - Algorithm for Embedded Memory Testing,"

International Journal of Electrical and Computer

Engineering (IJECE), vol. 2, no. 5, pp. 571-576, Oct.

2012.

[4]. N. Q. M. Noor, Y. Yusof, and A. Saparon, "Low Area

FSM-Based Memory BIST for Synchronous SRAM,"

in Proc. 5th International Colloquium on Signal

Processing & Its Applications (CSPA), 2009, pp. 409-
412.

[5]. J. Kruthika, G. R. Nisha, R. Gayathri, and V.

Jeyalakshmi, "SRAM Memory Built in Self-Test using

MARCH Algorithm," in Proc. 2022 International

Conference on Augmented Intelligence and

Sustainable Systems (ICAISS), 2022, pp. 1288-1292.

[6]. L. H. R, Varchaswini R., and Y. J. M. Shirur,

"Implementation of FSM-MBIST and Design of

Hybrid MBIST for Memory cluster in Asynchronous

SoC," International Journal of Computer Applications

Technology and Research, vol. 3, no. 4, pp. 216-220,
2014.

[7]. M. Mamatha and M. Muralidhar, "Memory Testing
using March C-Algorithm," International Journal of

VLSI System Design and Communication Systems, vol.

2, no. 7, pp. 512-517, Oct. 2014.

[8]. D. Jariwala and P. Garg, "FSM Based Memory BIST

using Verilog-HDL," Dept. of Electronics and

Communications Engineering, Nirma University,

Ahmedabad, India, 2022.

https://doi.org/10.38124/ijisrt/25aug1309
http://www.ijisrt.com/

	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	 Memory Fault Models
	 March Test Algorithms

	III. THE MARCH (5N) ALGORITHM AND MBIST ARCHITECTURE
	 Algorithmic Principles
	 Hardware Architecture
	 Implementation Details

	IV. EXPERIMENTAL SETUP AND METHODOLOGY
	 Test Environment
	 Fault Injection and Coverage Analysis
	 Performance and Resource Evaluation

	V. RESULTS AND ANALYSIS
	 Fault Coverage Analysis
	 Performance and Resource Analysis
	VI. DISCUSSION

	VII. CONCLUSION
	REFERENCES

