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Abstract: The Memory Built-In Self-Test (MBIST) is the standard for testing dense embedded memories that dominate 

modern SoCs; however, a critical trade-off exists between the test time and fault coverage. While comprehensive 

algorithms such as March C- (10n) are slow, faster algorithms such as MATS++ (6n) are often preferred, although both 

aim to detect critical Address Decoder Faults (AFs). This study presents an MBIST controller employing a novel March 

(5n) algorithm that bridges this gap, offering robust fault coverage with superior efficiency. The core innovation of the 

algorithm is the "address-as-data" paradigm, which uses the memory address (a) and its bitwise complement (~a) as test 

patterns to efficiently detect Stuck-at (SAF), Transition (TF), and Address Decoder (AF) faults. 

 

The proposed FSM-based controller has been designed in Verilog and validated on a Xilinx Zynq-7000 series FPGA 

platform. Experimental evaluation demonstrates that the March (5n) algorithm achieves significant reductions in test time 

compared to established approaches, with minimal resource overhead. These findings highlight the effectiveness of the 

March (5n) algorithm in achieving a balanced trade-off between speed and fault coverage, positioning it as a practical 

candidate for deployment in high-volume, cost-sensitive applications. 
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I. INTRODUCTION 

 

The scaling of system-on-chip (SoC) technology has 

made embedded memories the dominant on-chip component, 

creating significant testing challenges due to their density and 

limited accessibility. Traditional external testing with 

Automatic Test Equipment (ATE) is costly and often 

impractical, making Memory Built-In Self-Test (MBIST) the 

industry-standard solution. By integrating test logic on-chip, 

MBIST enables efficient, at-speed testing while reducing 

dependence on external hardware. 
 

The effectiveness of MBIST depends largely on the 

underlying algorithm, where a trade-off exists between fault 

coverage and test time. March-based algorithms are widely 

adopted but illustrate this conflict: comprehensive tests such 

as March C- (10n) achieve high fault coverage, including 

Stuck-at (SAF), Transition (TF), Address Decoder (AF), and 

Coupling Faults (CF), but incur long execution times. Faster 

algorithms such as MATS++ (6n) reduce test time and still 

cover SAF, TF, and AFs, but fail to detect the broader range 

of faults. This motivates the need for an intermediate solution 

that achieves critical fault coverage with lower complexity. 
 

This work introduces an FSM-based MBIST controller 

implementing a novel March (5n) algorithm that applies an 

"address-as-data" paradigm, using each memory address and 

its bitwise complement as test patterns. This design achieves 

robust AF coverage comparable to MATS++ but within a 5n 

complexity framework, improving efficiency without 

significant overhead. The controller is validated through fault 

injection simulations and FPGA hardware implementation on 

a Xilinx Zynq-7000 device, with results benchmarked against 

March C- and MATS++. The findings demonstrate that the 

March (5n) algorithm offers a balanced solution between 
speed and coverage, making it well-suited for high-volume, 

cost-sensitive applications. 

 

II. BACKGROUND AND RELATED WORK 

 

To fully appreciate the contribution of the March (5n) 

algorithm, it is essential to first understand the types of 

physical defects it targets and the established algorithms 

against which it is benchmarked. This section provides an 

overview of common memory fault models and summarizes 

the principles of industry-standard March test algorithms. 
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 Memory Fault Models 
The dense, array-based structure of modern memories 

makes them susceptible to a unique set of physical defects that 

differ from those in random logic. These defects are 

abstracted into functional fault models, which describe the 

incorrect behaviour of the memory from an external 

perspective. A test algorithm's quality is measured by its 

ability to detect these modelled faults. The key fault models 

relevant to this study are: 

 

 Stuck-at Faults (SAF): A cell or line is fixed at 0 or 1 

regardless of input. Detection requires writing and reading 
both values. 

 Transition Faults (TF): A cell fails to switch from 0→1 or 

1→0, typically due to timing issues. Tests must enforce 

both transitions. 

 Address Decoder Faults (AF): Faulty decoding may cause 

a cell to be unaddressable, multiple cells to be accessed, or 

the same cell to appear at different addresses. These faults 

require sequences in opposite address orders. 

 Coupling Faults (CF): An operation on one cell 

(aggressor) alters another cell (victim), such as inversion 

or forcing to a constant state. Detecting CFs requires more 
complex data backgrounds. 

 

 March Test Algorithms 

March tests are the dominant methodology for memory 

testing due to their linear complexity and high fault coverage. 

A March test consists of a sequence of "March elements," 

where each element specifies a series of read/write operations 

performed on every cell, typically in an ascending (↑) or 

descending (↓) address order, before moving to the next 

element. The following algorithms are the benchmarks for this 

study: 

  

 MATS++ (6n): The MATS++ algorithm is represented as 

{↑(w0); ↑ (r0, w1); ↓ (r1, w0); ↑(r0)}. It efficiently detects 

SAF, TF, and AF with six operations per cell. 

 March C- (10n): Represented as {(w0); ↑ (r0, w1); ↑ (r1, 

w0); ↓ (r0, w1); ↓ (r1, w0); ↑(r0)}, March C- is one of the 

most widely used algorithms covering SAF, TF, AF, and 

many CFs. Its thoroughness comes at the cost of long test 

times. 

 

These algorithms illustrate the core MBIST trade-off: 

March C- offers broad coverage but is slow, while MATS++ 
is faster but limited. This gap motivates intermediate 

approaches like the March (5n) algorithm, which aims to 

balance efficiency with robust AF detection. 

 

 

 

 

III. THE MARCH (5N) ALGORITHM AND MBIST 

ARCHITECTURE 

 

The proposed MBIST solution introduces a Finite State 

Machine (FSM)-based controller implementing a novel March 

(5n) algorithm. The aim is to achieve reliable fault coverage 

with reduced test time compared to conventional March tests. 

This section outlines the algorithm’s operational principles, 

the controller architecture, and the FPGA-based 

implementation used for validation. 

 

 Algorithmic Principles 
The March (5n) algorithm consists of four elements: {↑ 

(wb, wa); ↑(ra); ↓(wb); ↓(rb)}, where a represents the memory 

address, and b its bitwise complement. Unlike traditional tests 

that rely on static 0/1 patterns, this “address-as-data” 

paradigm generates dynamic data backgrounds directly from 

the address space. 

 

 This Structure Enables Efficient Fault Detection: 

 

 SAF: By writing and reading both a and its bitwise 

complement b for every memory location, every bit in the 

data word is subjected to both a 0 and a 1 state, ensuring 
any stuck-at condition is exposed. 

 TF: The (wb,wa) element sensitizes the up-transition, 

which is verified by the subsequent ra operation. The 

transition from a to b (between the ra and wb elements) 

sensitizes the down-transition, which is verified by the 

final rb operation. 

 AF: A fault where a higher address incorrectly accesses a 

lower one is caught by the initial ascending pass (↑(ra)). 

Conversely, a fault where a lower address overwrites a 

higher one is masked during the ascending pass but is 

guaranteed to be detected by the subsequent descending 
pass (↓(rb)). This intelligent structure ensures 

comprehensive AF coverage. 

 

Thus, the algorithm achieves full SAF, TF, and AF 

coverage within 5n complexity. 

 

 Hardware Architecture 

The controller is implemented as a modular FSM-based 

design with four main blocks: 

 

 FSM Controller: Sequences the March elements (M0–M3) 
and synchronizes operations. 

 Address Generator: Produces ascending or descending 

addresses using a counter and signals pass completion. 

 Data Generator: Derives a and b patterns. For wider data 

buses, an address-tiling scheme replicates address bits 

across the word, ensuring all bits are exercised. 

 Memory Interface: Switches the MUT into test mode by 

routing control, address, and data signals from the MBIST 

controller. 
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Fig. 1 High Level MBIST Controller Design 

 

 Implementation Details 

The design was coded in Verilog and deployed on a 

Xilinx Zynq-7000 FPGA using Vivado. A Zedboard interface 

with switches and LEDs supports reset, test initiation, fault 
injection, and real-time status reporting. This platform 

demonstrates correct functionality and validates the proposed 

architecture under hardware conditions. 

 

IV. EXPERIMENTAL SETUP AND 

METHODOLOGY 

 

The March (5n) MBIST controller was validated 

through simulation-based fault coverage analysis and FPGA-

based hardware evaluation. The methodology included 

controlled fault injection in simulation and comparative 

benchmarking against March C- and MATS++ to assess 
coverage, performance, and implementation cost. 

 

 Test Environment 

Design and functional verification were carried out in 

Verilog using a standard HDL simulator. Fault coverage was 

analyzed at the simulation level, while hardware synthesis and 

implementation were performed with the Xilinx Vivado 

Design Suite. A Xilinx Zynq-7000 FPGA on the Digilent 

Zedboard served as the validation platform, enabling 

collection of real hardware metrics including area, power, and 

execution time. 
 

 Fault Injection and Coverage Analysis 

Fault detection capability was evaluated using a fault 

injection framework. A total of 100 faults were modeled: 20 

Stuck-at, 20 Transition, 30 Address Decoder (10 each for non-

access, multiple-access, and wrong-access), and 30 Coupling 

(10 each for dynamic, inversion, and idempotent). Each fault 

was injected individually into the memory model and tested 

with the controller. Coverage was computed as the percentage 
of injected faults successfully detected by the algorithm, 

providing a uniform basis for comparison. 

 

 Performance and Resource Evaluation 

Beyond coverage, the controllers were benchmarked on 

three implementation metrics for memories of 4KB, 8KB, 

32KB, and 64KB: 

 

 Resource Utilization: FPGA area cost, measured in LUTs, 

Flip-Flops, and BRAMs. 

 Power Consumption: On-chip dynamic power reported by 

Vivado. 

 Test Time: Clock cycles and execution time required to 

complete the test sequence, giving an implementation-

independent measure of efficiency. 

 

V. RESULTS AND ANALYSIS 

 

The performance of March C-, MATS++, and the 

proposed March (5n) MBIST controllers was evaluated 

through simulation and FPGA implementation. Results are 

presented in terms of fault coverage and hardware metrics, 

with emphasis on comparative efficiency. 
 

 Fault Coverage Analysis 

Table 1 Summarizes the Coverage Achieved Against 

100 Injected Faults. 

 

Table 1 Fault Coverage Comparision 

Algorithm Complexity Faults Detected Coverage 

March C- 10n SAF, TF, AF, CF 100% 

MATS++ 6n SAF, TF, AF 70% 

March (5n) 5n SAF, TF, AF 70% 
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Fig 2 ModelSim Simulation of March 5n 

 

March C- confirmed its status as the most 

comprehensive test, detecting all fault classes. Both 
MATS++ and March (5n) achieved 70% coverage, targeting 

SAF, TF, and AF but not Coupling Faults. The equivalence 

in fault coverage between March (5n) and MATS++ 

highlights that the key differentiator lies in test efficiency 

rather than detection capability. 
 

 Performance and Resource Analysis 

Hardware synthesis results for the three controllers 

across multiple memory sizes are given in Tables 2–4. 

 

Table 2 March C- Performance and Resource Utilization 

Metric 4KB 8KB 32KB 64KB 

LUTs 31 28 30 31 

FF 55 56 58 59 

Power (W) 0.121 0.118 0.118 0.117 

Clock Cycles 10,245 20,485 81,925 163,845 

 

Table 3 MATS++ Performance and Resource Utilization 

Metric 4KB 8KB 32KB 64KB 

LUTs 30 28 29 30 

FF 52 53 55 56 

Power (W) 0.115 0.112 0.113 0.115 

Clock Cycles 6,146 12,290 49,154 98,306 

 

Table 4 March (5n) Performance and Resource Utilization 

Metric 4KB 8KB 32KB 64KB 

LUTs 30 28 29 30 

FF 50 51 53 53 

Power (W) 0.113 0.113 0.114 0.114 

Clock Cycles 5,124 10,244 40,964 81,924 

 

 Test Time: The March (5n) controller consistently 

outperformed the other algorithms. Compared to March 
C-, it reduced test time by about 50% (e.g., 10,245 vs. 

5,124 cycles at 4KB). Against MATS++, it delivered an 

average 20% speed improvement while maintaining 

identical fault coverage. 

 Resource Utilization: LUT and FF usage across all 

algorithms was nearly identical, with differences of only a 

few registers. 

 Power Consumption: Power measurements remained 

within a narrow range (0.112–0.121 W), showing no 

meaningful penalty from the address-as-data mechanism. 

VI. DISCUSSION 

 

The results demonstrate that March (5n) achieves the 
same coverage as MATS++ while reducing test time by 20%. 

At the same time, it maintains the lightweight hardware 

profile typical of linear March tests. Compared with March 

C-, it offers a practical compromise—delivering critical SAF, 

TF, and AF detection at half the time and negligible resource 

savings. For cost-sensitive applications where AF coverage is 

essential but full 10n testing is impractical, the March (5n) 

controller provides a balanced and efficient solution. 
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VII. CONCLUSION 
 

This work addressed the trade-off between test time and 

fault coverage in Memory Built-In Self-Test by introducing 

an FSM-based controller for the March (5n) algorithm. The 

design was implemented in Verilog, verified through fault 

injection, and validated on a Xilinx Zynq-7000 FPGA. 

Comparative evaluation against March C- and MATS++ 

confirmed the effectiveness of the approach. 

 

The results show that March (5n) achieves 70% 

coverage of common fault models—equivalent to 
MATS++—while reducing test time by approximately 20%. 

Against March C-, it maintains critical SAF, TF, and AF 

detection at half the test time. These gains are achieved 

without additional resource or power overhead, 

demonstrating that the address-as-data principle is both 

practical and efficient. 

 

Overall, the March (5n) algorithm offers a balanced 

alternative for applications where Address Decoder Fault 

coverage is essential but the time cost of a full 10n algorithm 

is unacceptable. Its efficiency and low hardware footprint 

make it well-suited for cost-sensitive, high-volume memory 
testing. 
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